start-ver=1.4
cd-journal=joma
no-vol=98
cd-vols=
no-issue=
article-no=
start-page=103224
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2026
dt-pub=202602
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The vicious cycle between nutrient deficiencies and antibiotic-induced nutrient depletion at the host cell-pathogen interface: Coenzyme Q10 and omega-6 as key molecular players
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The increasing prevalence of antibiotic resistance and pathological inflammation underscores the importance of understanding the underlying biochemical and immune processes that govern the host-pathogen interface. Nutrient deficiency, compounded by antibiotic-induced nutrient depletion, forms a vicious cycle of overt inflammation, contributing to bacterial toxin translocation in human inter-organ and intra-organs milieus. Coenzyme Q10 (CoQ10) and omega-6 linoleic acid (LA 18:26) are integral to cellular membrane integrity and immune defense. However, the complex enzymatic steps at the host cell-pathogen interface remain poorly understood. This study is particularly timely, as it explores these knowledge gaps, which can inform the development of nutritional and therapeutic strategies that modulate or target these mechanisms. Using an infectious-inflamed cell co-culture model of the gut-liver axis, we exposed triple cell co-cultures of human intestinal epithelial cells (T84), macrophage-like THP-1 cells, and hepatic cells (Huh7) to linoleic acid-producing Lactobacillus casei (L. casei) and Pseudomonas aeruginosa strain PAO1 (PAO1). The cultures were incubated for 6?h in medium with or without ceftazidime antibiotic. PAO1 and L. casei exerted opposing effects on the secretion of Th1 cytokines IL-1, IL-6, and the Th 2-type cytokine IL-10. Inoculation with PAO1 decreased CoQ10 and linoleic acid levels compared to uninfected controls. L. casei restored cellular health and biofunctionality impaired by PAO1, indicating its benefit to the host's well-being. The antibiotic ceftazidime exerted dual effects, alleviating PAO1 toxicity while marginally disrupting the beneficial effects of L. casei. Our results show how the vicious cycle of nutrient deficiency and antibiotic-induced nutrient loss reinforces pathological inflammation at the host cell-pathogen interface and highlights the need for more appropriate targeted antibiotic use that preserves essential nutrients like CoQ10 and omega-6 fatty acids. Inflammatory responses driven by opportunistic pathogens and LA-producing bacteria represent opposing immunometabolic pathways that may provide insights into novel approaches for treating infection and reducing antibiotic resistance.
en-copyright=
kn-copyright=
en-aut-name=GhadimiDarab
en-aut-sei=Ghadimi
en-aut-mei=Darab
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=Bl?merSophia
en-aut-sei=Bl?mer
en-aut-mei=Sophia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=?ahi?n KayaAysel
en-aut-sei=?ahi?n Kaya
en-aut-mei=Aysel
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=Kr?gerSandra
en-aut-sei=Kr?ger
en-aut-mei=Sandra
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=R?ckenChristoph
en-aut-sei=R?cken
en-aut-mei=Christoph
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=Sch?ferHeiner
en-aut-sei=Sch?fer
en-aut-mei=Heiner
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=UchiyamaJumpei
en-aut-sei=Uchiyama
en-aut-mei=Jumpei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MatsuzakiShigenobu
en-aut-sei=Matsuzaki
en-aut-mei=Shigenobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=BockelmannWilhelm
en-aut-sei=Bockelmann
en-aut-mei=Wilhelm
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Microbiology and Biotechnology, Max Rubner-Institut
kn-affil=
affil-num=2
en-affil=Faculty of Medicine, Christian-Albrechts-University of Kiel
kn-affil=
affil-num=3
en-affil=Department of Nutrition and Dietetics, Faculty of Health Sciences, Antalya Bilim University
kn-affil=
affil-num=4
en-affil=Institute of Pathology, Kiel University, University Hospital, Schleswig-Holstein
kn-affil=
affil-num=5
en-affil=Institute of Pathology, Kiel University, University Hospital, Schleswig-Holstein
kn-affil=
affil-num=6
en-affil=Laboratory of Molecular Gastroenterology & Hepatology, Christian-Albrechts-University & UKSH Campus Kiel
kn-affil=
affil-num=7
en-affil=Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Medical Laboratory Science, Faculty of Health Sciences, Kochi Gakuen University
kn-affil=
affil-num=9
en-affil=Department of Microbiology and Biotechnology, Max Rubner-Institut
kn-affil=
en-keyword=Antibiotics
kn-keyword=Antibiotics
en-keyword=Coenzyme Q10
kn-keyword=Coenzyme Q10
en-keyword=Infection
kn-keyword=Infection
en-keyword=Inflammation
kn-keyword=Inflammation
en-keyword=Micronutrients
kn-keyword=Micronutrients
en-keyword=Oxidative stress
kn-keyword=Oxidative stress
END
start-ver=1.4
cd-journal=joma
no-vol=136
cd-vols=
no-issue=10
article-no=
start-page=lxaf217
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250828
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Gut dysbiosis allows foodborne salmonella colonization in edible crickets: a probiotic strategy for enhanced food safety
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Aims: Edible insects, including crickets, represent a promising protein source, yet concerns over foodborne pathogens limit consumer acceptance. This study investigated whether gut microbiota modulates colonization by Salmonella enterica subsp. enterica serovar Enteritidis (SE) in the two-spotted cricket (Gryllus bimaculatus).
Methods and Results: Under standard conditions, SE was undetectable in crickets despite prolonged exposure; however, antibiotic-induced dysbiosis enabled stable SE colonization. Long-read 16S rRNA sequencing revealed significant microbiota shifts, notably a reduction in Lactococcus garvieae. In vitro assays showed strong inhibitory effects of L. garvieae against SE, and supplementation of dysbiotic crickets with L. garvieae reduced SE colonization by ?1000-fold.
Conclusions: The native cricket gut microbiota, especially L. garvieae, plays a protective role against SE colonization. Enhancing beneficial gut bacteria could mitigate pathogen risks and promote edible insects as a sustainable protein.
en-copyright=
kn-copyright=
en-aut-name=TsujiShuma
en-aut-sei=Tsuji
en-aut-mei=Shuma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MatsushitaOsamu
en-aut-sei=Matsushita
en-aut-mei=Osamu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=UchiyamaJumpei
en-aut-sei=Uchiyama
en-aut-mei=Jumpei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YokotaKenji
en-aut-sei=Yokota
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=BandoTetsuya
en-aut-sei=Bando
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OhuchiHideyo
en-aut-sei=Ohuchi
en-aut-mei=Hideyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=GotohKazuyoshi
en-aut-sei=Gotoh
en-aut-mei=Kazuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Medical Laboratory Science, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=2
en-affil=Department of Bacteriology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Bacteriology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Medical Laboratory Science, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=5
en-affil=Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Medical Laboratory Science, Okayama University Graduate School of Health Sciences
kn-affil=
en-keyword=food safety
kn-keyword=food safety
en-keyword=edible crickets
kn-keyword=edible crickets
en-keyword=Salmonella
kn-keyword=Salmonella
en-keyword=Lactococcus
kn-keyword=Lactococcus
en-keyword=probiotics
kn-keyword=probiotics
en-keyword=microbiome
kn-keyword=microbiome
END
start-ver=1.4
cd-journal=joma
no-vol=142
cd-vols=
no-issue=
article-no=
start-page=104967
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202506
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Cross-feeding between beneficial and pathogenic bacteria to utilize eukaryotic host cell-derived sialic acids and bacteriophages shape the pathogen-host interface milieu
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Under an inflamed-intestinal milieu, increased free sialic acids are associated with the overgrowth of some pathogenic bacterial strains. Recently, the protective immunomodulatory activity of gut bacteriophages (phages) has also been highlighted. However, the role of phages in triple reciprocal interactions between pathogenic bacteria, beneficial bacteria, and their host cell sialic acids has not been studied so far. We established a sialidase-explicit model in which beneficial and pathogenic bacteria interact through cross-feeding and competition for free sialic acid using a human triple co-culture cell model incorporating colonocytes (T84 cells), monocytes (THP-1 cells), and hepatocytes (Huh7 cells). Triple co-cultured cells were challenged with Gram-positive Bifidobacterium bifidum (B. bifidum) and Gram-negative Pseudomonas aeruginosa PAO1 (P. a PAO1) in the absence or presence of its KPP22 phage in two different cell culture mediums: 1) standard Dulbecco's Modified Eagle Medium (DMEM) and 2) DMEM with 2,3-dehydro-2-deoxy-N-acetylneuraminic acid (DANA). Changes in physiological, functional, and structural health markers of stimulated cocultured cells were evaluated. The concentrations of sialic acid and pro-inflammatory cytokines in the cell culture supernatants were quantified. P. a PAO1 triggered the release of interleukin 6 and 8 (IL-6 and IL-8), accompanied by increased levels of free sialic acid, reduced viability of co-cultured cells, and disrupted the integrity of the cellular monolayer. These disruptive effects were markedly attenuated by KPP22 phage and B. bifidum. In addition to well-documented differences in the structure and composition of the bacterial cell walls of Gram-negative pathogenic bacteria and bifidobacteria, two distinct factors seem to be pivotal in modulating the pathogen-host interface milieu: (i) the presence of phages and (ii) the utilization of free sialic acids secreted from host cells by bifidobacteria.
en-copyright=
kn-copyright=
en-aut-name=GhadimiDarab
en-aut-sei=Ghadimi
en-aut-mei=Darab
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=F?lster-HolstRegina
en-aut-sei=F?lster-Holst
en-aut-mei=Regina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=Bl?merSophia
en-aut-sei=Bl?mer
en-aut-mei=Sophia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=EbsenMichael
en-aut-sei=Ebsen
en-aut-mei=Michael
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=R?ckenChristoph
en-aut-sei=R?cken
en-aut-mei=Christoph
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=UchiyamaJumpei
en-aut-sei=Uchiyama
en-aut-mei=Jumpei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MatsuzakiShigenobu
en-aut-sei=Matsuzaki
en-aut-mei=Shigenobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=BockelmannWilhelm
en-aut-sei=Bockelmann
en-aut-mei=Wilhelm
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Microbiology and Biotechnology, Max Rubner-Institut
kn-affil=
affil-num=2
en-affil=Clinic of Dermatology, Venerology und Allergology, University Hospital Schleswig-Holstein
kn-affil=
affil-num=3
en-affil=Clinic of Dermatology, Venerology und Allergology, University Hospital Schleswig-Holstein
kn-affil=
affil-num=4
en-affil=St?dtisches MVZ Kiel GmbH (Kiel City Hospital), Department of Pathology
kn-affil=
affil-num=5
en-affil=Institute of Pathology, Kiel University, University Hospital, Schleswig-Holstein
kn-affil=
affil-num=6
en-affil=Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Medical Laboratory Science, Faculty of Health Sciences, Kochi Gakuen University
kn-affil=
affil-num=8
en-affil=Department of Microbiology and Biotechnology, Max Rubner-Institut
kn-affil=
en-keyword=Bacterial sialidase
kn-keyword=Bacterial sialidase
en-keyword=Inflammation
kn-keyword=Inflammation
en-keyword=Cytokines
kn-keyword=Cytokines
en-keyword=Infection
kn-keyword=Infection
en-keyword=Bifidobacteria
kn-keyword=Bifidobacteria
en-keyword=Phages
kn-keyword=Phages
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=12
article-no=
start-page=25
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241216
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Disruption of the Enterococcus faecalis?Induced Biofilm on the Intraocular Lens Using Bacteriophages
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Purpose: To compare the effects of bacteriophages (phages) and vancomycin on Enterococcus faecalis?induced biofilms on the intraocular lens.
Methods: E. faecalis strains EF24, GU02, GU03, and phiEF14H1 were used. The expression of the enterococcus surface protein (esp) gene was analyzed using polymerase chain reaction. Phages or vancomycin was added to the biofilms formed on culture plates or acrylic intraocular lenses. The biofilms were quantified after staining with crystal violet. The structure of the biofilms was analyzed using scanning electron microscopy.
Results: E. faecalis strains EF24, GU02, and GU03 formed biofilms on cell culture plates; however, the esp-negative GU03 strain had a significantly lower biofilm-forming ability than the esp-positive strains EF24 and GU02. The addition of phiEF14H1 resulted in a significant reduction in biofilm mass produced by both EF24 and GU02 compared with the untreated control. However, the addition of vancomycin did not degrade the biofilms. Phages significantly degraded biofilms and reduced the viable EF24 and GU02 bacteria on the intraocular lens.
Conclusions: Phages can degrade biofilms formed on the intraocular lens and destroy the bacteria within it. Thus, phage therapy may be a new treatment option for refractory and recurrent endophthalmitis caused by biofilm-forming bacteria.
Translational Relevance: Phage therapy, a novel treatment option for refractory and recurrent endophthalmitis caused by biofilm-forming bacteria, effectively lyses E. faecalis?induced biofilms.
en-copyright=
kn-copyright=
en-aut-name=KishimotoTatsuma
en-aut-sei=Kishimoto
en-aut-mei=Tatsuma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FukudaKen
en-aut-sei=Fukuda
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=IshidaWaka
en-aut-sei=Ishida
en-aut-mei=Waka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KuwanaAozora
en-aut-sei=Kuwana
en-aut-mei=Aozora
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TodokoroDaisuke
en-aut-sei=Todokoro
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=UchiyamaJumpei
en-aut-sei=Uchiyama
en-aut-mei=Jumpei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MatsuzakiShigenobu
en-aut-sei=Matsuzaki
en-aut-mei=Shigenobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YamashiroKenji
en-aut-sei=Yamashiro
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Ophthalmology and Visual Science, Kochi Medical School, Kochi University
kn-affil=
affil-num=2
en-affil=Department of Ophthalmology and Visual Science, Kochi Medical School, Kochi University
kn-affil=
affil-num=3
en-affil=Department of Ophthalmology and Visual Science, Kochi Medical School, Kochi University
kn-affil=
affil-num=4
en-affil=Department of Ophthalmology and Visual Science, Kochi Medical School, Kochi University
kn-affil=
affil-num=5
en-affil=Department of Ophthalmology, Gunma University Graduate School of Medicine
kn-affil=
affil-num=6
en-affil=Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Medical Laboratory Science, Faculty of Health Sciences, Kochi Gakuen University
kn-affil=
affil-num=8
en-affil=Department of Ophthalmology and Visual Science, Kochi Medical School, Kochi University
kn-affil=
en-keyword=biofilm
kn-keyword=biofilm
en-keyword=bacteriophage
kn-keyword=bacteriophage
en-keyword=intraocular lens
kn-keyword=intraocular lens
en-keyword=endophthalmitis
kn-keyword=endophthalmitis
en-keyword=cataract
kn-keyword=cataract
en-keyword=enterococcus faecalis
kn-keyword=enterococcus faecalis
END
start-ver=1.4
cd-journal=joma
no-vol=23
cd-vols=
no-issue=5
article-no=
start-page=209
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250514
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Novel Anti-MRSA Peptide from Mangrove-Derived Virgibacillus chiguensis FN33 Supported by Genomics and Molecular Dynamics
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Antimicrobial resistance (AMR) is a global health threat, with methicillin-resistant Staphylococcus aureus (MRSA) being one of the major resistant pathogens. This study reports the isolation of a novel mangrove-derived bacterium, Virgibacillus chiguensis FN33, as identified through genome analysis and the discovery of a new anionic antimicrobial peptide (AMP) exhibiting anti-MRSA activity. The AMP was composed of 23 amino acids, which were elucidated as NH3-Glu-Gly-Gly-Cys-Gly-Val-Asp-Thr-Trp-Gly-Cys-Leu-Thr-Pro-Cys-His-Cys-Asp-Leu-Phe-Cys-Thr-Thr-COOH. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) for MRSA were 8 ?g/mL and 16 ?g/mL, respectively. FN33 AMP induced cell membrane permeabilization, suggesting a membrane-disrupting mechanism. The AMP remained stable at 30?40 C but lost activity at higher temperatures and following exposure to proteases, surfactants, and extreme pH. All-atom molecular dynamics simulations showed that the AMP adopts a -sheet structure upon membrane interaction. These findings suggest that Virgibacillus chiguensis FN33 is a promising source of novel antibacterial agents against MRSA, supporting alternative strategies for drug-resistant infections.
en-copyright=
kn-copyright=
en-aut-name=SermkaewNamfa
en-aut-sei=Sermkaew
en-aut-mei=Namfa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=AtipairinApichart
en-aut-sei=Atipairin
en-aut-mei=Apichart
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=BoonruamkaewPhetcharat
en-aut-sei=Boonruamkaew
en-aut-mei=Phetcharat
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KrobthongSucheewin
en-aut-sei=Krobthong
en-aut-mei=Sucheewin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=AonbangkhenChanat
en-aut-sei=Aonbangkhen
en-aut-mei=Chanat
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=UchiyamaJumpei
en-aut-sei=Uchiyama
en-aut-mei=Jumpei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YingchutrakulYodying
en-aut-sei=Yingchutrakul
en-aut-mei=Yodying
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SongnakaNuttapon
en-aut-sei=Songnaka
en-aut-mei=Nuttapon
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=School of Pharmacy, Walailak University
kn-affil=
affil-num=2
en-affil=School of Pharmacy, Walailak University
kn-affil=
affil-num=3
en-affil=School of Pharmacy, Walailak University
kn-affil=
affil-num=4
en-affil=Center of Excellence in Natural Products Chemistry (CENP), Department of Chemistry, Faculty of Science, Chulalongkorn University
kn-affil=
affil-num=5
en-affil=Center of Excellence in Natural Products Chemistry (CENP), Department of Chemistry, Faculty of Science, Chulalongkorn University
kn-affil=
affil-num=6
en-affil=Department of Bacteriology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency
kn-affil=
affil-num=8
en-affil=School of Pharmacy, Walailak University
kn-affil=
en-keyword=anionic AMP
kn-keyword=anionic AMP
en-keyword=AMP
kn-keyword=AMP
en-keyword=antimicrobial peptide
kn-keyword=antimicrobial peptide
en-keyword=antimicrobial resistance
kn-keyword=antimicrobial resistance
en-keyword=FN33
kn-keyword=FN33
en-keyword=genome
kn-keyword=genome
en-keyword=molecular dynamics simulations
kn-keyword=molecular dynamics simulations
en-keyword=MRSA
kn-keyword=MRSA
en-keyword=Virgibacillus chiguensis
kn-keyword=Virgibacillus chiguensis
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=9
article-no=
start-page=846
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240905
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Unveiling a New Antimicrobial Peptide with Efficacy against P. aeruginosa and K. pneumoniae from Mangrove-Derived Paenibacillus thiaminolyticus NNS5-6 and Genomic Analysis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=This study focused on the discovery of the antimicrobial peptide (AMP) derived from mangrove bacteria. The most promising isolate, NNS5-6, showed the closest taxonomic relation to Paenibacillus thiaminolyticus, with the highest similarity of 74.9%. The AMP produced by Paenibacillus thiaminolyticus NNS5-6 exhibited antibacterial activity against various Gram-negative pathogens, especially Pseudomonas aeruginosa and Klebsiella pneumoniae. The peptide sequence consisted of 13 amino acids and was elucidated as Val-Lys-Gly-Asp-Gly-Gly-Pro-Gly-Thr-Val-Tyr-Thr-Met. The AMP mainly exhibited random coil and antiparallel beta-sheet structures. The stability study indicated that this AMP was tolerant of various conditions, including proteolytic enzymes, pH (1.2?14), surfactants, and temperatures up to 40 C for 12 h. The AMP demonstrated 4 ?g/mL of MIC and 4?8 ?g/mL of MBC against both pathogens. Time-kill kinetics showed that the AMP acted in a time- and concentration-dependent manner. A cell permeability assay and scanning electron microscopy revealed that the AMP exerted the mode of action by disrupting bacterial membranes. Additionally, nineteen biosynthetic gene clusters of secondary metabolites were identified in the genome. NNS5-6 was susceptible to various commonly used antibiotics supporting the primary safety requirement. The findings of this research could pave the way for new therapeutic approaches in combating antibiotic-resistant pathogens.
en-copyright=
kn-copyright=
en-aut-name=SermkaewNamfa
en-aut-sei=Sermkaew
en-aut-mei=Namfa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=AtipairinApichart
en-aut-sei=Atipairin
en-aut-mei=Apichart
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KrobthongSucheewin
en-aut-sei=Krobthong
en-aut-mei=Sucheewin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=AonbangkhenChanat
en-aut-sei=Aonbangkhen
en-aut-mei=Chanat
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YingchutrakulYodying
en-aut-sei=Yingchutrakul
en-aut-mei=Yodying
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=UchiyamaJumpei
en-aut-sei=Uchiyama
en-aut-mei=Jumpei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SongnakaNuttapon
en-aut-sei=Songnaka
en-aut-mei=Nuttapon
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=School of Pharmacy, Walailak University
kn-affil=
affil-num=2
en-affil=School of Pharmacy, Walailak University
kn-affil=
affil-num=3
en-affil=Center of Excellence in Natural Products Chemistry (CENP), Department of Chemistry, Faculty of Science, Chulalongkorn University
kn-affil=
affil-num=4
en-affil=Center of Excellence in Natural Products Chemistry (CENP), Department of Chemistry, Faculty of Science, Chulalongkorn University
kn-affil=
affil-num=5
en-affil=National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency
kn-affil=
affil-num=6
en-affil=Department of Bacteriology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=School of Pharmacy, Walailak University
kn-affil=
en-keyword=antimicrobial peptide
kn-keyword=antimicrobial peptide
en-keyword=antimicrobial resistance
kn-keyword=antimicrobial resistance
en-keyword=bacterial genome
kn-keyword=bacterial genome
en-keyword=biosynthetic gene cluster
kn-keyword=biosynthetic gene cluster
en-keyword=Klebsiella pneumoniae
kn-keyword=Klebsiella pneumoniae
en-keyword=Mangrove
kn-keyword=Mangrove
en-keyword=mass spectrometry
kn-keyword=mass spectrometry
en-keyword=NNS5-6
kn-keyword=NNS5-6
en-keyword=Paenibacillus thiaminolyticus
kn-keyword=Paenibacillus thiaminolyticus
en-keyword=Pseudomonas aeruginosa
kn-keyword=Pseudomonas aeruginosa
END
start-ver=1.4
cd-journal=joma
no-vol=26
cd-vols=
no-issue=16
article-no=
start-page=7832
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250813
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Synergistic Antimicrobial Activity of BrSPR20-P1 Peptide and Silver Nanoparticles Against Pathogenic Bacteria
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Bacterial infection is a cause of life-threatening diseases. The emergence of antimicrobial-resistant bacteria exacerbates this situation, highlighting the need for the discovery of new antimicrobial agents. Our previous study identified a novel antimicrobial peptide, BrSPR20-P1 (P1), which showed potential activity against MRSA. Additionally, silver nanoparticles (AgNPs) exhibit broad-spectrum antibacterial activity, capable of killing multidrug-resistant bacteria. The combination of antimicrobial agents presents a novel strategy for combating these pathogens. This study aimed to evaluate the antibacterial activity of the combination of P1 and AgNPs. It revealed that the combinations showed synergy. The P1 and AgNP mixture at a concentration of 1 and 8 ?g/mL (1:8) doubled the activity against S. aureus and MRSA, while that combination of 64 and 64 ?g/mL (64:64) exhibited broad-spectrum activity, expanding to E. coli with a 32-fold increase. These combinations exhibited a bactericidal effect, showing the rapid killing of tested bacteria at 10~ MIC, with killing rates during the first 3 h ranging from 4.04 } 0.01 to 4.31 } 0.03 h?1. The P1 and AgNP mixtures caused a low risk of antibacterial resistance up to 30 passages. It was demonstrated that the synergistic activity of P1 and AgNPs occurred through the disruption of cell walls and membranes, leakage of intracellular materials, and cell lysis. Additionally, the mixtures appeared to interact with bacterial genomic DNA, as indicated by a gel retardation assay. These activities of the combinations were concentration-dependent. The 1:8 ?g/mL mixture caused low hemolysis and cytotoxicity and did not impede the wound healing process. In contrast, although the 64:64 ?g/mL mixture showed excellent antibacterial efficacy, it was toxic to erythrocytes and mammalian cells. It implies that dose optimization is required to balance its efficacy and toxicity. Therefore, the P1 and AgNP combinations exhibit synergistic antimicrobial activity and have the potential to resolve bacterial infections.
en-copyright=
kn-copyright=
en-aut-name=ThonginThanyamai
en-aut-sei=Thongin
en-aut-mei=Thanyamai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SawatdeeSomchai
en-aut-sei=Sawatdee
en-aut-mei=Somchai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SongnakaNuttapon
en-aut-sei=Songnaka
en-aut-mei=Nuttapon
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=UchiyamaJumpei
en-aut-sei=Uchiyama
en-aut-mei=Jumpei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=WiwasukuTheanchai
en-aut-sei=Wiwasuku
en-aut-mei=Theanchai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SrichanaTeerapol
en-aut-sei=Srichana
en-aut-mei=Teerapol
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NakphengTitpawan
en-aut-sei=Nakpheng
en-aut-mei=Titpawan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=AtipairinApichart
en-aut-sei=Atipairin
en-aut-mei=Apichart
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil= School of Pharmacy, Walailak University
kn-affil=
affil-num=2
en-affil= School of Pharmacy, Walailak University
kn-affil=
affil-num=3
en-affil= School of Pharmacy, Walailak University
kn-affil=
affil-num=4
en-affil=Department of Bacteriology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=School of Science, Walailak University
kn-affil=
affil-num=6
en-affil=Drug Delivery System Excellence Center and Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University
kn-affil=
affil-num=7
en-affil=Drug Delivery System Excellence Center and Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University
kn-affil=
affil-num=8
en-affil= School of Pharmacy, Walailak University
kn-affil=
en-keyword=antimicrobial peptide
kn-keyword=antimicrobial peptide
en-keyword=Brevibacillus sp. SPR20
kn-keyword=Brevibacillus sp. SPR20
en-keyword=silver nanoparticle
kn-keyword=silver nanoparticle
en-keyword=synergistic effect
kn-keyword=synergistic effect
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=hcaf176
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250801
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Disseminated Mycobacterium chelonae infection predominantly involving the facial region of an immunocompromised elderly patient
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=SazumiYosuke
en-aut-sei=Sazumi
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HagiyaHideharu
en-aut-sei=Hagiya
en-aut-mei=Hideharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FukushimaShinnosuke
en-aut-sei=Fukushima
en-aut-mei=Shinnosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=UchiyamaJumpei
en-aut-sei=Uchiyama
en-aut-mei=Jumpei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MuenrayaPoowadon
en-aut-sei=Muenraya
en-aut-mei=Poowadon
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SugiharaSatoru
en-aut-sei=Sugihara
en-aut-mei=Satoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KawakamiYoshio
en-aut-sei=Kawakami
en-aut-mei=Yoshio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MorizaneShin
en-aut-sei=Morizane
en-aut-mei=Shin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OguniKohei
en-aut-sei=Oguni
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=OtsukaFumio
en-aut-sei=Otsuka
en-aut-mei=Fumio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of General Medicine, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Infectious Diseases, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Infectious Diseases, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Dermatology, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Dermatology, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Dermatology, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of General Medicine, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Department of General Medicine, Okayama University Hospital
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=19
cd-vols=
no-issue=10
article-no=
start-page=e0310962
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241023
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Examination of yield, bacteriolytic activity and cold storage of linker deletion mutants based on endolysin S6_ORF93 derived from Staphylococcus giant bacteriophage S6
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Methicillin-resistant Staphylococcus spp. present challenges in clinical and veterinary settings because effective antimicrobial agents are limited. Phage-encoded peptidoglycan-degrading enzyme, endolysin, is expected to be a novel antimicrobial agent. The enzymatic activity has recently been shown to be influenced by the linker between functional domains in the enzyme. S6_ORF93 (ORF93) is one of the endolysins derived from previously isolated Staphylococcus giant phage S6. The ORF93 was speculated to have a catalytic and peptidoglycan-binding domain with a long linker. In this study, we examined the influence of linker shortening on the characteristics of ORF93. We produce wild-type ORF93 and the linker deletion mutants using an Escherichia coli expression system. These mutants were designated as ORF93-Delta 05, ORF93-Delta 10, ORF93-Delta 15, and ORF93-Delta 20, from which 5, 10, 15, and 20 amino acids were removed from the linker, respectively. Except for the ORF93-Delta 20, ORF93 and its mutants were expressed as soluble proteins. Moreover, ORF93-Delta 15 showed the highest yield and bacteriolytic activity, while the antimicrobial spectrum was homologous. The cold storage experiment showed a slight effect by the linker deletion. According to our results and other studies, linker investigations are crucial in endolysin development.
en-copyright=
kn-copyright=
en-aut-name=MunetomoSosuke
en-aut-sei=Munetomo
en-aut-mei=Sosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=UchiyamaJumpei
en-aut-sei=Uchiyama
en-aut-mei=Jumpei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=Takemura-UchiyamaIyo
en-aut-sei=Takemura-Uchiyama
en-aut-mei=Iyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=WanganuttaraThamonwan
en-aut-sei=Wanganuttara
en-aut-mei=Thamonwan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YamamotoYumiko
en-aut-sei=Yamamoto
en-aut-mei=Yumiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TsukuiToshihiro
en-aut-sei=Tsukui
en-aut-mei=Toshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HagiyaHideharu
en-aut-sei=Hagiya
en-aut-mei=Hideharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KanamaruShuji
en-aut-sei=Kanamaru
en-aut-mei=Shuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KandaHideyuki
en-aut-sei=Kanda
en-aut-mei=Hideyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MatsushitaOsamu
en-aut-sei=Matsushita
en-aut-mei=Osamu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Public Health, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Nippon Zenyaku Kogyo Co. Ltd.
kn-affil=
affil-num=7
en-affil=Department of Infectious Diseases, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=School of Life Science and Technology, Tokyo Institute of Technology
kn-affil=
affil-num=9
en-affil=Department of Public Health, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=73
cd-vols=
no-issue=1
article-no=
start-page=31
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230916
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Exploratory study of volatile fatty acids and the rumen-and-gut microbiota of dairy cows in a single farm, with respect to subclinical infection with bovine leukemia virus
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background Subclinical infection with bovine leukemia virus (BLV) in cows can cause economic losses in milk and meat production in many countries, as BLV-related negative effects. The volatile fatty acids (VFAs) and microbiota present in the digestive tracts of cows can contribute to cow health. Here, we exploratorily investigated the VFAs and microbiota in the rumen and gut with respect to subclinical BLV infection using cows housed at a single farm.
Results We analyzed a herd of 38 cows kept at one farm, which included 15 uninfected and 23 BLV-infected cows. First, the analysis of the VFAs in the rumen, gut, and blood revealed an absence of statistically significant differences between the uninfected and BLV-infected groups. Thus, BLV infection did not cause major changes in VFA levels in all tested specimens. Next, we analyzed the rumen and gut microbiota. The analysis of the microbial diversity revealed a modest difference between the uninfected and BLV-infected groups in the gut; by contrast, no differences were observed in the rumen. In addition, the investigation of the bacteria that were predominant in the uninfected and BLV-infected groups via a differential abundance analysis showed that no significant bacteria were present in either of the microbiota. Thus, BLV infection possibly affected the gut microbiota to a small extent. Moreover, bacterial associations were compared between the uninfected and BLV-infected groups. The results of this analysis suggested that BLV infection affected the equilibrium of the bacterial associations in both microbiota, which might be related to the BLV-related negative effects. Thus, BLV infection may negatively affect the equilibrium of bacterial associations in both microbiota.
Conclusions Subclinical BLV infection is likely to affect the rumen and gut microbiota, which may partly explain the BLV-related negative effects.
en-copyright=
kn-copyright=
en-aut-name=SuzukiTakehito
en-aut-sei=Suzuki
en-aut-mei=Takehito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MurakamiHironobu
en-aut-sei=Murakami
en-aut-mei=Hironobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=UchiyamaJumpei
en-aut-sei=Uchiyama
en-aut-mei=Jumpei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SatoReiichiro
en-aut-sei=Sato
en-aut-mei=Reiichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=Takemura-UchiyamaIyo
en-aut-sei=Takemura-Uchiyama
en-aut-mei=Iyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OgataMasaya
en-aut-sei=Ogata
en-aut-mei=Masaya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SogawaKazuyuki
en-aut-sei=Sogawa
en-aut-mei=Kazuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=IshidaHiroho
en-aut-sei=Ishida
en-aut-mei=Hiroho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=AtipairinApichart
en-aut-sei=Atipairin
en-aut-mei=Apichart
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MatsushitaOsamu
en-aut-sei=Matsushita
en-aut-mei=Osamu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=NagaiMakoto
en-aut-sei=Nagai
en-aut-mei=Makoto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=School of Veterinary Medicine, Azabu University
kn-affil=
affil-num=2
en-affil=School of Veterinary Medicine, Azabu University
kn-affil=
affil-num=3
en-affil=Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Faculty of Agriculture, University of Miyazaki
kn-affil=
affil-num=5
en-affil=Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=School of Veterinary Medicine, Azabu University
kn-affil=
affil-num=7
en-affil=School of Veterinary Medicine, Azabu University
kn-affil=
affil-num=8
en-affil=School of Veterinary Medicine, Azabu University
kn-affil=
affil-num=9
en-affil=School of Pharmacy, Walailak University
kn-affil=
affil-num=10
en-affil=Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=11
en-affil=School of Veterinary Medicine, Azabu University
kn-affil=
en-keyword=Bovine leukemia virus
kn-keyword=Bovine leukemia virus
en-keyword=Volatile fatty acids
kn-keyword=Volatile fatty acids
en-keyword=Rumen
kn-keyword=Rumen
en-keyword=Gut, Microbiota
kn-keyword=Gut, Microbiota
en-keyword=Cows
kn-keyword=Cows
END
start-ver=1.4
cd-journal=joma
no-vol=11
cd-vols=
no-issue=3
article-no=
start-page=e04764-22
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230426
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Metataxonomic Analysis of the Uterine Microbiota Associated with Low Fertility in Dairy Cows Using Endometrial Tissues Prior to First Artificial Insemination
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The deterioration in reproductive performance in association with low fertility leads to significant economic losses on dairy farms. The uterine microbiota has begun to attract attention as a possible cause of unexplained low fertility. We analyzed the uterine microbiota associated with fertility by 16S rRNA gene amplicon sequencing in dairy cows. First, the alpha (Chao1 and Shannon) and beta (unweighted and weighted UniFrac) diversities of 69 cows at four dairy farms that had passed the voluntary waiting period before the first artificial insemination (AI) were analyzed with respect to factors including farm, housing style, feeding management, parity, and AI frequency to conception. Significant differences were observed in the farm, housing style, and feeding management, except parity and AI frequency to conception. The other diversity metrics did not show significant differences in the tested factors. Similar results were obtained for the predicted functional profile. Next, the microbial diversity analysis of 31 cows at a single farm using weighted UniFrac distance matrices revealed a correlation with AI frequency to conception but not with parity. In correlation with AI frequency to conception, the predicted function profile appeared to be slightly modified and a single bacterial taxon, Arcobacter, was detected. The bacterial associations related to fertility were estimated. Considering these, the uterine microbiota in dairy cows can be varied depending on the farm management practices and may become one of the measures for low fertility.
en-copyright=
kn-copyright=
en-aut-name=YagisawaTakuya
en-aut-sei=Yagisawa
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=UchiyamaJumpei
en-aut-sei=Uchiyama
en-aut-mei=Jumpei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=Takemura-UchiyamaIyo
en-aut-sei=Takemura-Uchiyama
en-aut-mei=Iyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=AndoShun
en-aut-sei=Ando
en-aut-mei=Shun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=IchiiOsamu
en-aut-sei=Ichii
en-aut-mei=Osamu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MurakamiHironobu
en-aut-sei=Murakami
en-aut-mei=Hironobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MatsushitaOsamu
en-aut-sei=Matsushita
en-aut-mei=Osamu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KatagiriSeiji
en-aut-sei=Katagiri
en-aut-mei=Seiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Hokkaido Agriculture Mutual Aid Association
kn-affil=
affil-num=2
en-affil=Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Hokkaido Agriculture Mutual Aid Association
kn-affil=
affil-num=5
en-affil=Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University
kn-affil=
affil-num=6
en-affil=Laboratory of Infectious Diseases, School of Veterinary Medicine, Azabu University
kn-affil=
affil-num=7
en-affil=Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Laboratory of Theriogenology, Department of Clinical Sciences, Faculty of Veterinary Medicine, Hokkaido University
kn-affil=
en-keyword=dairy cows
kn-keyword=dairy cows
en-keyword=low fertility
kn-keyword=low fertility
en-keyword=uterine microbiota
kn-keyword=uterine microbiota
en-keyword=microbial diversity
kn-keyword=microbial diversity
en-keyword=bacterial association
kn-keyword=bacterial association
END
start-ver=1.4
cd-journal=joma
no-vol=84
cd-vols=
no-issue=7
article-no=
start-page=1019
end-page=1022
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=2022
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Screening of bacterial DNA in bile sampled from healthy dogs and dogs suffering from liver- or gallbladder-associated disease
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Although the biliary system is generally aseptic, gallbladder microbiota has been reported in humans and some animals apart from dogs. We screened and analyzed the bacterial deoxyribonucleic acid in canine gallbladders using bile sampled from 7 healthy dogs and 52 dogs with liver- or gallbladder-associated disease. PCR screening detected bacteria in 17.3% of diseased dogs (9/52) and none in healthy dogs. Microbiota analysis of PCR-positive samples showed that the microbial diversity differed between liver- and gallbladder-associated disease groups. Thus, a specific bacterial community appears to occur at a certain frequency in the bile of diseased dogs.
en-copyright=
kn-copyright=
en-aut-name=NEOSakurako
en-aut-sei=NEO
en-aut-mei=Sakurako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TAKEMURA-UCHIYAMAIyo
en-aut-sei=TAKEMURA-UCHIYAMA
en-aut-mei=Iyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=UCHIYAMAJumpei
en-aut-sei=UCHIYAMA
en-aut-mei=Jumpei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MURAKAMIHironobu
en-aut-sei=MURAKAMI
en-aut-mei=Hironobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SHIMAAyaka
en-aut-sei=SHIMA
en-aut-mei=Ayaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KAYANUMAHideki
en-aut-sei=KAYANUMA
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YOKOYAMATaiki
en-aut-sei=YOKOYAMA
en-aut-mei=Taiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TAKAGISatoshi
en-aut-sei=TAKAGI
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KANAIEiichi
en-aut-sei=KANAI
en-aut-mei=Eiichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=HISASUEMasaharu
en-aut-sei=HISASUE
en-aut-mei=Masaharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=School of Veterinary Medicine, Azabu University
kn-affil=
affil-num=2
en-affil=Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=School of Veterinary Medicine, Azabu University
kn-affil=
affil-num=5
en-affil=Anicom Specialty Medical Institute Inc.
kn-affil=
affil-num=6
en-affil=School of Veterinary Medicine, Azabu University
kn-affil=
affil-num=7
en-affil=School of Veterinary Medicine, Azabu University
kn-affil=
affil-num=8
en-affil=School of Veterinary Medicine, Azabu University
kn-affil=
affil-num=9
en-affil=School of Veterinary Medicine, Azabu University
kn-affil=
affil-num=10
en-affil=School of Veterinary Medicine, Azabu University
kn-affil=
en-keyword=bile
kn-keyword=bile
en-keyword=bile microbiota
kn-keyword=bile microbiota
en-keyword=gallbladder
kn-keyword=gallbladder
en-keyword=hospitalized dog
kn-keyword=hospitalized dog
en-keyword=laboratory dog
kn-keyword=laboratory dog
END
start-ver=1.4
cd-journal=joma
no-vol=75
cd-vols=
no-issue=6
article-no=
start-page=1607
end-page=1616
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20221201
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Characterization of the oral and fecal microbiota associated with atopic dermatitis in dogs selected from a purebred Shiba Inu colony
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Atopic dermatitis (AD) is a chronic and relapsing multifactorial inflammatory skin disease that also affects dogs. The oral and gut microbiota are associated with many disorders, including allergy. Few studies have addressed the oral and gut microbiota in dogs, although the skin microbiota has been studied relatively well in these animals. Here, we studied the AD-associated oral and gut microbiota in 16 healthy and nine AD dogs from a purebred Shiba Inu colony. We found that the diversity of the oral microbiota was significantly different among the dogs, whereas no significant difference was observed in the gut microbiota. Moreover, a differential abundance analysis detected the Family_XIII_AD3011_group (Anaerovoracaceae) in the gut microbiota of AD dogs; however, no bacterial taxa were detected in the oral microbiota. Third, the comparison of the microbial co-occurrence patterns between AD and healthy dogs identified differential networks in which the bacteria in the oral microbiota that were most strongly associated with AD were related with human periodontitis, whereas those in the gut microbiota were related with dysbiosis and gut inflammation. These results suggest that AD can alter the oral and gut microbiota in dogs.
en-copyright=
kn-copyright=
en-aut-name=UchiyamaJumpei
en-aut-sei=Uchiyama
en-aut-mei=Jumpei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OsumiTakafumi
en-aut-sei=Osumi
en-aut-mei=Takafumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MizukamiKeijiro
en-aut-sei=Mizukami
en-aut-mei=Keijiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=FukuyamaTomoki
en-aut-sei=Fukuyama
en-aut-mei=Tomoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ShimaAyaka
en-aut-sei=Shima
en-aut-mei=Ayaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=UnnoAsaka
en-aut-sei=Unno
en-aut-mei=Asaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=Takemura]UchiyamaIyo
en-aut-sei=Takemura]Uchiyama
en-aut-mei=Iyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=UneYumi
en-aut-sei=Une
en-aut-mei=Yumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MurakamiHironobu
en-aut-sei=Murakami
en-aut-mei=Hironobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=SakaguchiMasahiro
en-aut-sei=Sakaguchi
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Laboratory of Veterinary Internal Medicine, Division of Animal Life Science, Graduate School, Tokyo University of Agriculture and Technology
kn-affil=
affil-num=3
en-affil=School of Veterinary Medicine, Azabu University
kn-affil=
affil-num=4
en-affil=School of Veterinary Medicine, Azabu University
kn-affil=
affil-num=5
en-affil=Anicom Specialty Medical Institute Inc.
kn-affil=
affil-num=6
en-affil=School of Veterinary Medicine, Azabu University
kn-affil=
affil-num=7
en-affil=Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Faculty of Veterinary Medicine, Okayama University of Science
kn-affil=
affil-num=9
en-affil=School of Veterinary Medicine, Azabu University
kn-affil=
affil-num=10
en-affil=School of Veterinary Medicine, Azabu University
kn-affil=
en-keyword=oral
kn-keyword=oral
en-keyword=gut
kn-keyword=gut
en-keyword=microbiota
kn-keyword=microbiota
en-keyword=atopic dermatitis
kn-keyword=atopic dermatitis
en-keyword=Shiba Inu
kn-keyword=Shiba Inu
en-keyword=dog colony
kn-keyword=dog colony
en-keyword=canine
kn-keyword=canine
END
start-ver=1.4
cd-journal=joma
no-vol=319
cd-vols=
no-issue=
article-no=
start-page=198881
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20221002
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Phylogenic analysis of new viral cluster of large phages with unusual DNA genomes containing uracil in place of thymine in gene-sharing network, using phages S6 and PBS1 and relevant uncultured phages derived from sewage metagenomics
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Bacteriophages (phages) are the most diverse and abundant life-form on Earth. Jumbophages are phages with double-stranded DNA genomes longer than 200 kbp. Among these, some jumbophages with uracil in place of thymine as a nucleic acid base, which we have tentatively termed "dU jumbophages" in this study, have been reported. Because the dU jumbophages are considered to be a living fossil from the RNA world, the evolutionary traits of dU jumbophages are of interest. In this study, we examined the phylogeny of dU jumbophages. First, tBLASTx analysis of newly sequenced dU jumbophages such as Bacillus phage PBS1 and previously isolated Staphylococcus phage S6 showed similarity to the other dU jumbophages. Second, we detected the two partial genome sequences of uncultured phages possibly relevant to dU jumbophages, scaffold_002 and scaffold_007, from wastewater metagenomics. Third, according to the gene-sharing network analysis, the dU jumbophages, including phages PBS1 and S6, and uncultured phage scaffold_002 formed a cluster, which suggested a new viral subfamily/family. Finally, analyses of the phylogenetic relationship with other phages showed that the dU jumbophage cluster, which had two clades of phages infecting Gram-negative and Gram-positive bacteria, diverged from the single ancestral phage. These findings together with previous reports may imply that dU jumbophages evolved from the same origin before divergence of Gram-negative and Gram-positive bacteria.
en-copyright=
kn-copyright=
en-aut-name=UchiyamaJumpei
en-aut-sei=Uchiyama
en-aut-mei=Jumpei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=Takemura-UchiyamaIyo
en-aut-sei=Takemura-Uchiyama
en-aut-mei=Iyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=GotohKazuyoshi
en-aut-sei=Gotoh
en-aut-mei=Kazuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KatoShin-ichiro
en-aut-sei=Kato
en-aut-mei=Shin-ichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SakaguchiYoshihiko
en-aut-sei=Sakaguchi
en-aut-mei=Yoshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MurakamiHironobu
en-aut-sei=Murakami
en-aut-mei=Hironobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=FukuyamaTomoki
en-aut-sei=Fukuyama
en-aut-mei=Tomoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KanekiMao
en-aut-sei=Kaneki
en-aut-mei=Mao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MatsushitaOsamu
en-aut-sei=Matsushita
en-aut-mei=Osamu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MatsuzakiShigenobu
en-aut-sei=Matsuzaki
en-aut-mei=Shigenobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Research Institute of Molecular Genetics, Kochi University
kn-affil=
affil-num=5
en-affil=Department of Microbiology, Kitasato University School of Medicine
kn-affil=
affil-num=6
en-affil=School of Veterinary Medicine, Azabu University
kn-affil=
affil-num=7
en-affil=School of Veterinary Medicine, Azabu University
kn-affil=
affil-num=8
en-affil=School of Veterinary Medicine, Azabu University
kn-affil=
affil-num=9
en-affil=Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Medical Laboratory Science, Faculty of Health Sciences, Kochi Gakuen University
kn-affil=
en-keyword=Environmental virus
kn-keyword=Environmental virus
en-keyword=Jumbophage
kn-keyword=Jumbophage
en-keyword=Metagenomics
kn-keyword=Metagenomics
en-keyword=Evolution
kn-keyword=Evolution
en-keyword=Uncultured phage
kn-keyword=Uncultured phage
END
start-ver=1.4
cd-journal=joma
no-vol=369
cd-vols=
no-issue=1
article-no=
start-page=fnac019
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=2022
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Heterogeneous IgE reactivities to Staphylococcus pseudintermedius strains in dogs with atopic dermatitis, and the identification of DM13-domain-containing protein as a bacterial IgE-reactive molecule
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Staphylococcus pseudintermedius is one of the major pathogens causing canine skin infection. In canine atopic dermatitis (AD), heterogeneous strains of S. pseudintermedius reside on the affected skin site. Because an increase in specific IgE to this bacterium has been reported, S. pseudintermedius is likely to exacerbate the severity of canine AD. In this study, the IgE reactivities to various S. pseudintermedius strains and the IgE-reactive molecules of S. pseudintermedius were investigated. First, examining the IgE reactivities to eight strains of S. pseudintermedius using 141 sera of AD dogs, strain variation of S. pseudintermedius showed 10?63% of the IgE reactivities. This is different from the expected result based on the concept of Staphylococcus aureus clonality in AD patients. Moreover, according to the western blot analysis, there were more than four proteins reactive to IgE. Subsequently, the analysis of the common IgE-reactive protein at ?15?kDa confirmed that the DM13-domain-containing protein was reactive in AD dogs, which is not coincident with any S. aureus IgE-reactive molecules. Considering these, S. pseudintermedius is likely to exacerbate AD severity in dogs, slightly different from the case of S. aureus in human AD.
en-copyright=
kn-copyright=
en-aut-name=Takemura-UchiyamaIyo
en-aut-sei=Takemura-Uchiyama
en-aut-mei=Iyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TsuruiHiroki
en-aut-sei=Tsurui
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ShimakuraHidekatsu
en-aut-sei=Shimakura
en-aut-mei=Hidekatsu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NasukawaTadahiro
en-aut-sei=Nasukawa
en-aut-mei=Tadahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ImanishiIchiro
en-aut-sei=Imanishi
en-aut-mei=Ichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=UchiyamaJumpei
en-aut-sei=Uchiyama
en-aut-mei=Jumpei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=FukuyamaTomoki
en-aut-sei=Fukuyama
en-aut-mei=Tomoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SakamotoShuji
en-aut-sei=Sakamoto
en-aut-mei=Shuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MorisawaKeiko
en-aut-sei=Morisawa
en-aut-mei=Keiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=FujimuraMasato
en-aut-sei=Fujimura
en-aut-mei=Masato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=MurakamiHironobu
en-aut-sei=Murakami
en-aut-mei=Hironobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=KanamaruShuji
en-aut-sei=Kanamaru
en-aut-mei=Shuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=KurokawaKenji
en-aut-sei=Kurokawa
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=KawamotoKeiko
en-aut-sei=Kawamoto
en-aut-mei=Keiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=IyoriKeita
en-aut-sei=Iyori
en-aut-mei=Keita
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=SakaguchiMasahiro
en-aut-sei=Sakaguchi
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
affil-num=1
en-affil=Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=School of Veterinary Medicine, Azabu University, Fuchinobe 1-17-71
kn-affil=
affil-num=3
en-affil=School of Veterinary Medicine, Azabu University
kn-affil=
affil-num=4
en-affil=School of Veterinary Medicine, Azabu University
kn-affil=
affil-num=5
en-affil=School of Veterinary Medicine, Azabu University
kn-affil=
affil-num=6
en-affil=Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama Universty
kn-affil=
affil-num=7
en-affil=School of Veterinary Medicine, Azabu University
kn-affil=
affil-num=8
en-affil=Science Research Center, Kochi Medical School
kn-affil=
affil-num=9
en-affil=Science Research Center, Kochi Medical School
kn-affil=
affil-num=10
en-affil=Fujimura Animal Hospital
kn-affil=
affil-num=11
en-affil=School of Veterinary Medicine, Azabu University
kn-affil=
affil-num=12
en-affil=Department of Life Science and Technology, Tokyo Institute of Technology
kn-affil=
affil-num=13
en-affil=Faculty of Pharmaceutical Sciences, Nagasaki International University
kn-affil=
affil-num=14
en-affil=School of Veterinary Medicine, Azabu University
kn-affil=
affil-num=15
en-affil=Vet Derm Tokyo, Dermatological and Laboratory Service for Animals
kn-affil=
affil-num=16
en-affil=School of Veterinary Medicine, Azabu University
kn-affil=
en-keyword=Staphylococcus pseudintermedius
kn-keyword=Staphylococcus pseudintermedius
en-keyword=atopic dermatitis
kn-keyword=atopic dermatitis
en-keyword= IgE
kn-keyword= IgE
en-keyword=dogs
kn-keyword=dogs
en-keyword=DM13-domain-containing protein
kn-keyword=DM13-domain-containing protein
en-keyword=exacerbation factor
kn-keyword=exacerbation factor
END
start-ver=1.4
cd-journal=joma
no-vol=9
cd-vols=
no-issue=1
article-no=
start-page=e00077-21
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=202193
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Use of Recombinant Endolysin to Improve Accuracy of Group B Streptococcus Tests
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Group B Streptococcus (GBS) causes serious neonatal infection via vertical transmission. The prenatal GBS screening test is performed at the late stage of pregnancy to avoid risks of infection. In this test, enrichment culture is performed, followed by GBS identification. Selective medium is used for the enrichment; however, Enterococcus faecalis, which is a potential contaminant in swab samples, can interfere with the growth of GBS. Such bacterial contamination can lead to false-negative results. Endolysin, a bacteriophage-derived enzyme, degrades peptidoglycan in the bacterial cell wall; it is a promising antimicrobial agent for selectively eliminating specific bacterial genera/species. In this study, we used the recombinant endolysin EG-LYS, which is specific to E. faecalis; the endolysin potentially enriched GBS in the selective culture. First, in the false-negative model (coculture of GBS and E. faecalis, which disabled GBS detection in the subsequent GBS identification test), EG-LYS treatment at 0.1 mg/ml improved GBS detection. Next, we used 548 vaginal swabs to test the efficacy of EG-LYS treatment in improving GBS detection. EG-LYS treatment (0.1 mg/ml) increased the GBS-positive ratio to 17.9%, compared to 15.7% in the control (phosphate-buffered saline [PBS] treatment). In addition, there were an increased number of GBS colonies under EG-LYS treatment in some samples. The results were supported by the microbiota analysis of the enriched cultures. In conclusion, EG-LYS treatment of the enrichment culture potentially improves the accuracy of the prenatal GBS screening test.
en-copyright=
kn-copyright=
en-aut-name=MatsuiHidehito
en-aut-sei=Matsui
en-aut-mei=Hidehito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=UchiyamaJumpei
en-aut-sei=Uchiyama
en-aut-mei=Jumpei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OgataMasaya
en-aut-sei=Ogata
en-aut-mei=Masaya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NasukawaTadahiro
en-aut-sei=Nasukawa
en-aut-mei=Tadahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=Takemura-UchiyamaIyo
en-aut-sei=Takemura-Uchiyama
en-aut-mei=Iyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KatoShin-ichiro
en-aut-sei=Kato
en-aut-mei=Shin-ichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MurakamiHironobu
en-aut-sei=Murakami
en-aut-mei=Hironobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HigashideMasato
en-aut-sei=Higashide
en-aut-mei=Masato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=HanakiHideaki
en-aut-sei=Hanaki
en-aut-mei=Hideaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=?mura Satoshi Memorial Institute, Kitasato University
kn-affil=
affil-num=2
en-affil=Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=School of Veterinary Medicine, Azabu University, Sagamihara
kn-affil=
affil-num=4
en-affil=School of Veterinary Medicine, Azabu University, Sagamihara
kn-affil=
affil-num=5
en-affil=School of Veterinary Medicine, Azabu University, Sagamihara
kn-affil=
affil-num=6
en-affil=Kochi University
kn-affil=
affil-num=7
en-affil=School of Veterinary Medicine, Azabu University, Sagamihara
kn-affil=
affil-num=8
en-affil=Kotobiken Medical Laboratories, Inc., Tsukuba
kn-affil=
affil-num=9
en-affil=?mura Satoshi Memorial Institute, Kitasato University
kn-affil=
END