start-ver=1.4 cd-journal=joma no-vol=11 cd-vols= no-issue=2 article-no= start-page=158 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210218 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A Novel 89Zr-labeled DDS Device Utilizing Human IgG Variant (scFv): gLactosomeh Nanoparticle-Based Theranostics for PET Imaging and Targeted Therapy en-subtitle= kn-subtitle= en-abstract= kn-abstract=gTheranostics,h a new concept of medical advances featuring a fusion of therapeutic and diagnostic systems, provides promising prospects in personalized medicine, especially cancer. The theranostics system comprises a novel 89Zr-labeled drug delivery system (DDS), derived from the novel biodegradable polymeric micelle, gLactosomeh nanoparticles conjugated with specific shortened IgG variant, and aims to successfully deliver therapeutically effective molecules, such as the apoptosis-inducing small interfering RNA (siRNA) intracellularly while offering simultaneous tumor visualization via PET imaging. A 27 kDa-human single chain variable fragment (scFv) of IgG to establish clinically applicable PET imaging and theranostics in cancer medicine was fabricated to target mesothelin (MSLN), a 40 kDa-differentiation-related cell surface glycoprotein antigen, which is frequently and highly expressed by malignant tumors. This system coupled with the cell penetrating peptide (CPP)-modified and photosensitizer (e.g., 5, 10, 15, 20-tetrakis (4-aminophenyl) porphyrin (TPP))-loaded Lactosome particles for photochemical internalized (PCI) driven intracellular siRNA delivery and the combination of 5-aminolevulinic acid (ALA) photodynamic therapy (PDT) offers a promising nano-theranostic-based cancer therapy via its targeted apoptosis-inducing feature. This review focuses on the combined advances in nanotechnology and material sciences utilizing the g89Zr-labeled CPP and TPP-loaded Lactosome particlesh and future directions based on important milestones and recent developments in this platform. en-copyright= kn-copyright= en-aut-name=LimMelissa Siaw Han en-aut-sei=Lim en-aut-mei=Melissa Siaw Han kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OhtsukiTakashi en-aut-sei=Ohtsuki en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TakenakaFumiaki en-aut-sei=Takenaka en-aut-mei=Fumiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KobayashiKazuko en-aut-sei=Kobayashi en-aut-mei=Kazuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=AkehiMasaru en-aut-sei=Akehi en-aut-mei=Masaru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=UjiHirotaka en-aut-sei=Uji en-aut-mei=Hirotaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KobuchiHirotsugu en-aut-sei=Kobuchi en-aut-mei=Hirotsugu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SasakiTakanori en-aut-sei=Sasaki en-aut-mei=Takanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=OzekiEiichi en-aut-sei=Ozeki en-aut-mei=Eiichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MatsuuraEiji en-aut-sei=Matsuura en-aut-mei=Eiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Cell Chemistry, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=3 en-affil=Collaborative Research Centre for OMIC, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Collaborative Research Centre for OMIC, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Collaborative Research Centre for OMIC, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Material Chemistry, Graduate School of Engineering, Kyoto University kn-affil= affil-num=7 en-affil=Department of Cell Chemistry, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Collaborative Research Centre for OMIC, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Technology Research Laboratory, Shimadzu Corporation kn-affil= affil-num=10 en-affil=Department of Cell Chemistry, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=theranostics kn-keyword=theranostics en-keyword=single chain variable fragment of IgG (scFv) kn-keyword=single chain variable fragment of IgG (scFv) en-keyword=drug delivery system (DDS) kn-keyword=drug delivery system (DDS) en-keyword=photodynamic therapy (PDT) kn-keyword=photodynamic therapy (PDT) en-keyword=PET imaging kn-keyword=PET imaging en-keyword=accelerated blood clearance (ABC) kn-keyword=accelerated blood clearance (ABC) en-keyword=cell penetrating peptide (CPP) kn-keyword=cell penetrating peptide (CPP) en-keyword=siRNA kn-keyword=siRNA en-keyword=ATP-binding cassette subfamily G member 2 (ABCG2) kn-keyword=ATP-binding cassette subfamily G member 2 (ABCG2) END start-ver=1.4 cd-journal=joma no-vol=6 cd-vols= no-issue=6 article-no= start-page=e04114 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200608 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Rapid and specific detection of oxidized LDL/2GPI complexes via facile lateral flow immunoassay en-subtitle= kn-subtitle= en-abstract= kn-abstract=2-Glycoprotein I (2GPI) forms indissociable complex with oxidized LDL (oxLDL) into proatherogenic oxLDL/2GPI complex through a specific ligand known as 7-ketocholesteryl-9-carboxynonanoate (oxLig-1). Recent discoveries have demonstrated the atherogenicity of these complexes in patients of both systemic and non-systemic autoimmune diseases. Hence, serological level of oxLDL/2GPI complexes may represent one crucial clinical parameter for disease prognosis of atherosclerosis-related diseases. Herein, we established a simple, specific and rapid gold nanoparticle (GNP) based lateral flow immunoassay (LFIA) to quantify oxLDL/2GPI complexes from test samples. Specificities of hybridoma cell-derived monoclonal antibodies against antigen, optimal conditions for conjugation of antibody with GNP, and sensitivity of oxLDL/2GPI LFIA in comparison to an ELISA-based detection method were assessed accordingly. The established oxLDL/2GPI LFIA was capable of detecting oxLDL/2GPI specifically without interference from autoantibodies and solitary components of oxLDL/2GPI present in test samples. A significant correlation (R2 > 0.8) was also obtained with the oxLDL/2GPI LFIA when compared to the ELISA-based detection. On the whole, the oxLDL/2GPI LFIA remains advantageous over the oxLDL/2GPI ELISA. The unnecessary washing step, short developmental and analytical time support facile and rapid detection of oxLDL/2GPI as opposed to the laborious ELISA system. en-copyright= kn-copyright= en-aut-name=TanXian Wen en-aut-sei=Tan en-aut-mei=Xian Wen kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakenakaFumiaki en-aut-sei=Takenaka en-aut-mei=Fumiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TakekawaHironori en-aut-sei=Takekawa en-aut-mei=Hironori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MatsuuraEiji en-aut-sei=Matsuura en-aut-mei=Eiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Cell Chemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Collaborative Research Center (OMIC), Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Faculty of Medicine, Okayama University kn-affil= affil-num=4 en-affil=Department of Cell Chemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Biological sciences kn-keyword=Biological sciences en-keyword=Antibody kn-keyword=Antibody en-keyword=Biochemistry kn-keyword=Biochemistry en-keyword=Lipid peroxidation kn-keyword=Lipid peroxidation en-keyword=Health sciences kn-keyword=Health sciences en-keyword=Oxidized LDL (oxLDL) kn-keyword=Oxidized LDL (oxLDL) en-keyword=2-glycoprotein I (2GPI) kn-keyword=2-glycoprotein I (2GPI) en-keyword=OxLDL-2GPI kn-keyword=OxLDL-2GPI en-keyword=Lateral flow immunoassay (LFIA) kn-keyword=Lateral flow immunoassay (LFIA) en-keyword=Enzyme-linked immunosorbent assay (ELISA) kn-keyword=Enzyme-linked immunosorbent assay (ELISA) en-keyword=Point-of-care kn-keyword=Point-of-care END start-ver=1.4 cd-journal=joma no-vol=70 cd-vols= no-issue=1 article-no= start-page=13 end-page=24 dt-received= dt-revised= dt-accepted= dt-pub-year=2016 dt-pub=201602 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The Function of 2-glycoprotein I in Angiogenesis and Its in Vivo Distribution in Tumor Xenografts en-subtitle= kn-subtitle= en-abstract= kn-abstract=Intact 2-glycoprotein I (i2GPI) is a glycoprotein that regulates coagulation and fibrinolysis. Nicked 2GPI (n2GPI) possesses an angiogenic property at a relatively low concentration, and an antiangiogenic property at a high concentration. Here we investigated the functions of i 2GPI and n2GPI in vascular endothelial growth factor (VEGF)-A-induced endothelial cell proliferation and tube formation. We used noninvasive PET imaging to analyze the in vivo distribution of intravenously injected 2GPI variants in tumor lesions in mice. i2GPI was incubated with plasmin to obtain n2GPI, and its N-terminal sequence was analyzed. n2GPI had at least one other cleavage site upstream of the 2GPI?s domain V, whereas the former plasmin-cleavage site locates between K317 and T318. Both of intact and nicked 2GPI significantly inhibited the VEGF-A-induced cell proliferation and the tube formation of human umbilical vein endothelial cells (HUVECs). PET imaging visualized considerably distributed intensities of all tested 2GPI variants in tumor lesions of pancreatic tumor cell-xenografts. These results indicate that 2GPI may be physiologically and pathophysiologically important in the regulation of not only coagulation and fibrinolysis, but also angiogenesis. en-copyright= kn-copyright= en-aut-name=Arum Tri Wahyuningsih en-aut-sei=Arum Tri Wahyuningsih en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ShenLianhua en-aut-sei=Shen en-aut-mei=Lianhua kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KobayashiKazuko en-aut-sei=Kobayashi en-aut-mei=Kazuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SasakiTakanori en-aut-sei=Sasaki en-aut-mei=Takanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakenakaFumiaki en-aut-sei=Takenaka en-aut-mei=Fumiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HanadaTakahisa en-aut-sei=Hanada en-aut-mei=Takahisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=AkehiMasaru en-aut-sei=Akehi en-aut-mei=Masaru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=AkahoshiAkiya en-aut-sei=Akahoshi en-aut-mei=Akiya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=OzekiEiichi en-aut-sei=Ozeki en-aut-mei=Eiichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=AndoEiji en-aut-sei=Ando en-aut-mei=Eiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MatsuuraEiji en-aut-sei=Matsuura en-aut-mei=Eiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil= kn-affil=Department of Cell Chemistry , Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=2 en-affil= kn-affil=Collaborative Research Center (OMIC), Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=3 en-affil= kn-affil=Collaborative Research Center (OMIC), Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=4 en-affil= kn-affil=Collaborative Research Center (OMIC), Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=5 en-affil= kn-affil=Collaborative Research Center (OMIC), Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=6 en-affil= kn-affil=Collaborative Research Center (OMIC), Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=7 en-affil= kn-affil=Collaborative Research Center (OMIC), Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=8 en-affil= kn-affil=Collaborative Research Center (OMIC), Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=9 en-affil= kn-affil=Technology Research Laboratory, Shimadzu Corporation affil-num=10 en-affil= kn-affil=Life Science Business Department, Shimadzu Corporation affil-num=11 en-affil= kn-affil=Department of Cell Chemistry , Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences en-keyword=2-glycoprotein I (2GPI) kn-keyword=2-glycoprotein I (2GPI) en-keyword=angiogenesis kn-keyword=angiogenesis en-keyword=vascular endothelial growth factor-A (VEGF-A) kn-keyword=vascular endothelial growth factor-A (VEGF-A) en-keyword=positron emission tomography (PET) imaging kn-keyword=positron emission tomography (PET) imaging END