start-ver=1.4 cd-journal=joma no-vol=81 cd-vols= no-issue=8 article-no= start-page=1191 end-page=1196 dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=20190824 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Risk assessment for hepatitis E virus infection from domestic pigs introduced into an experimental animal facility in a medical school en-subtitle= kn-subtitle= en-abstract= kn-abstract= Hepatitis E virus (HEV) is known to cause zoonotic infections from pigs, wild boars and deer. Domestic pigs have been used as an experimental animal model in medical research and training; however, the risks of HEV infection from pigs during animal experiments are largely unknown. Here, we retrospectively investigated the seroprevalence and detection rates of viral RNA in 73 domestic pigs (average 34.5 kg) introduced into an animal experimental facility in a medical school during 2012-2016. We detected anti-HEV immunoglobulin G antibodies in 24 of 73 plasma samples (32.9%), though none of the samples were positive for viral RNA. Plasma samples of 18 pigs were sequentially monitored and were classified into four patterns: sustained positive (5 pigs), sustained negative (5 pigs), conversion to positive (6 pigs) and conversion to negative (2 pigs). HEV genomes were detected in 2 of 4 liver samples from pigs that were transported from the same farm during 2016-2017. Two viral sequences of the overlapping open reading frame (ORF) 2/3 region (97 bp) were identical and phylogenetically fell into genotype 3. A 459-bp length of the ORF2 region of an amplified fragment from a pig transported in 2017 was clustered with the wbJYG1 isolate (subgenotype 3b) with 91.5% (420/459 bp) nucleotide identity. Based on our results, we suggest that domestic pigs introduced into animal facilities carry a potential risk of HEV infection to researchers, trainees and facility staff. Continuous surveillance and precautions are important to prevent HEV infection in animal facilities. en-copyright= kn-copyright= en-aut-name=OgawaHirohito en-aut-sei=Ogawa en-aut-mei=Hirohito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HirayamaHaruko en-aut-sei=Hirayama en-aut-mei=Haruko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TanakaSatsuki en-aut-sei=Tanaka en-aut-mei=Satsuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YataNorio en-aut-sei=Yata en-aut-mei=Norio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NambaHikaru en-aut-sei=Namba en-aut-mei=Hikaru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YamashitaNobuko en-aut-sei=Yamashita en-aut-mei=Nobuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YonemitsuKenzo en-aut-sei=Yonemitsu en-aut-mei=Kenzo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MaedaKen en-aut-sei=Maeda en-aut-mei=Ken kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MominokiKatsumi en-aut-sei=Mominoki en-aut-mei=Katsumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=YamadaMasao en-aut-sei=Yamada en-aut-mei=Masao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Virology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Animal Resources, Advanced Science Research Center, Okayama University kn-affil= affil-num=3 en-affil=Department of Virology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Animal Resources, Advanced Science Research Center, Okayama University kn-affil= affil-num=5 en-affil=Department of Virology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Virology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University kn-affil= affil-num=8 en-affil=Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University kn-affil= affil-num=9 en-affil=Department of Animal Resources, Advanced Science Research Center, Okayama University kn-affil= affil-num=10 en-affil=Department of Virology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, kn-affil= en-keyword=animal experimental facility kn-keyword=animal experimental facility en-keyword=domestic pig kn-keyword=domestic pig en-keyword=hepatitis E virus kn-keyword=hepatitis E virus en-keyword=zoonosis kn-keyword=zoonosis END start-ver=1.4 cd-journal=joma no-vol=9 cd-vols= no-issue=12 article-no= start-page=371 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2017 dt-pub=20171204 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Characterization of a Novel Bat Adenovirus Isolated from Straw-Colored Fruit Bat (Eidolon helvum). en-subtitle= kn-subtitle= en-abstract= kn-abstract= Bats are important reservoirs for emerging zoonotic viruses. For extensive surveys of potential pathogens in straw-colored fruit bats (Eidolon helvum) in Zambia, a total of 107 spleen samples of E. helvum in 2006 were inoculated onto Vero E6 cells. The cell culture inoculated with one of the samples (ZFB06-106) exhibited remarkable cytopathic changes. Based on the ultrastructural property in negative staining and cross-reactivity in immunofluorescence assays, the virus was suspected to be an adenovirus, and tentatively named E. helvum adenovirus 06-106 (EhAdV 06-106). Analysis of the full-length genome of 30,134 bp, determined by next-generation sequencing, showed the presence of 28 open reading frames. Phylogenetic analyses confirmed that EhAdV 06-106 represented a novel bat adenovirus species in the genus Mastadenovirus. The virus shared similar characteristics of low G + C contents with recently isolated members of species Bat mastadenoviruses E, F and G, from which EhAdV 06-106 diverged by more than 15% based on the distance matrix analysis of DNA polymerase amino acid sequences. According to the taxonomic criteria, we propose the tentative new species name "Bat mastadenovirus H". Because EhAdV 06-106 exhibited a wide in vitro cell tropism, the virus might have a potential risk as an emerging virus through cross-species transmission. en-copyright= kn-copyright= en-aut-name=OgawaHirohito en-aut-sei=Ogawa en-aut-mei=Hirohito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KajiharaMasahiro en-aut-sei=Kajihara en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NaoNaganori en-aut-sei=Nao en-aut-mei=Naganori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ShigenoAsako en-aut-sei=Shigeno en-aut-mei=Asako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=FujikuraDaisuke en-aut-sei=Fujikura en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HangfombeBernard M. en-aut-sei=Hangfombe en-aut-mei=Bernard M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MweeneAaron S. en-aut-sei=Mweene en-aut-mei=Aaron S. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MutemwaAlisheke en-aut-sei=Mutemwa en-aut-mei=Alisheke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SquarreDavid en-aut-sei=Squarre en-aut-mei=David kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=YamadaMasao en-aut-sei=Yamada en-aut-mei=Masao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=HigashiHideaki en-aut-sei=Higashi en-aut-mei=Hideaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=SawaHirofumi en-aut-sei=Sawa en-aut-mei=Hirofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=TakadaAyato en-aut-sei=Takada en-aut-mei=Ayato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Department of Virology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil= Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University kn-affil= affil-num=3 en-affil= Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University kn-affil= affil-num=4 en-affil= Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University kn-affil= affil-num=5 en-affil=Division of Infection and Immunity, Research Center for Zoonosis Control, Hokkaido University kn-affil= affil-num=6 en-affil=Department of Paraclinical Studies, School of Veterinary Medicine, University of Zambia kn-affil= affil-num=7 en-affil=Department of Disease Control, School of Veterinary Medicine, University of Zambia kn-affil= affil-num=8 en-affil= Provincial Veterinary Office, Department of Veterinary Services, Ministry of Fisheries and Livestock kn-affil= affil-num=9 en-affil=Department of National Parks and Wildlife, Ministry of Tourism and Arts kn-affil= affil-num=10 en-affil=Department of Virology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Division of Infection and Immunity, Research Center for Zoonosis Control, Hokkaido University kn-affil= affil-num=12 en-affil= Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University kn-affil= affil-num=13 en-affil=Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University kn-affil= en-keyword=Eidolon helvum kn-keyword=Eidolon helvum en-keyword=Zambia kn-keyword=Zambia en-keyword=adenovirus kn-keyword=adenovirus en-keyword=bat kn-keyword=bat END