start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=22
article-no=
start-page=e038137
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241119
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Eight-Year Outcomes of Cardiosphere-Derived Cells in Single Ventricle Congenital Heart Disease
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Cardiosphere]derived cell (CDC) infusion was associated with better clinical outcomes at 2?years in patients with single ventricle heart disease. The current study investigates time]to]event outcomes at 8?years.
Methods and Results: This cohort enrolled patients with single ventricles who underwent stage 2 or stage 3 palliation from January 2011 to January 2015 at 8 centers in Japan. The primary outcomes were time]dependent CDC treatment effects on death and late complications during 8?years of follow]up, assessed by restricted mean survival time. Among 93 patients enrolled (mean age, 2.3}1.3?years; 56% men), 40 received CDC infusion. Overall survival for CDC]treated versus control patients did not differ at 8?years (hazard ratio [HR], 0.60 [95% CI, 0.21?1.77]; P=0.35). Treatment effect had nonproportional hazards for death favoring CDCs at 4?years (restricted mean survival time difference +0.33?years [95% CI, 0.01?0.66]; P=0.043). In patients with heart failure with reduced ejection fraction, CDC treatment effect on survival was greater over 8?years (restricted mean survival time difference +1.58?years [95% CI, 0.05?3.12]; P=0.043). Compared with control participants, CDC]treated patients showed lower incidences of late failure (HR, 0.45 [95% CI, 0.21?0.93]; P=0.027) and adverse events (subdistribution HR, 0.50 [95% CI, 0.27?0.94]; P=0.036) at 8?years.
Conclusions: By 8?years, CDC infusion was associated with lower hazards of late failure and adverse events in single ventricle heart disease. CDC treatment effect on survival was notable by 4?years and showed a durable clinical benefit in patients with heart failure with reduced ejection fraction over 8?years.
Registration: URL: https://www.clinicaltrials.gov; Unique identifiers: NCT01273857 and NCT01829750.
en-copyright=
kn-copyright=
en-aut-name=HiraiKenta
en-aut-sei=Hirai
en-aut-mei=Kenta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SawadaRyusuke
en-aut-sei=Sawada
en-aut-mei=Ryusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HayashiTomohiro
en-aut-sei=Hayashi
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ArakiToru
en-aut-sei=Araki
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NakagawaNaomi
en-aut-sei=Nakagawa
en-aut-mei=Naomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KondoMaiko
en-aut-sei=Kondo
en-aut-mei=Maiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YasudaKenji
en-aut-sei=Yasuda
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HirataTakuya
en-aut-sei=Hirata
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=SatoTomoyuki
en-aut-sei=Sato
en-aut-mei=Tomoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=NakatsukaYuki
en-aut-sei=Nakatsuka
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=YoshidaMichihiro
en-aut-sei=Yoshida
en-aut-mei=Michihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=KasaharaShingo
en-aut-sei=Kasahara
en-aut-mei=Shingo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=BabaKenji
en-aut-sei=Baba
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=OhHidemasa
en-aut-sei=Oh
en-aut-mei=Hidemasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=the TICAP/PERSEUS Study Group
en-aut-sei=the TICAP/PERSEUS Study Group
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
affil-num=1
en-affil=Department of Pediatrics Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Pharmacology Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Pediatrics Kurashiki Central Hospital
kn-affil=
affil-num=4
en-affil=Department of Pediatrics National Hospital Organization Fukuyama Medical Center
kn-affil=
affil-num=5
en-affil=Department of Pediatric Cardiology Hiroshima City Hiroshima Citizens Hospital
kn-affil=
affil-num=6
en-affil=Department of Pediatrics Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Pediatrics Shimane University Faculty of Medicine
kn-affil=
affil-num=8
en-affil=Department of Pediatrics Kyoto University Graduate School of Medicine
kn-affil=
affil-num=9
en-affil=Department of Pediatrics Jichi Medical University
kn-affil=
affil-num=10
en-affil=Department of Data Science, Center for Innovative Clinical Medicine Okayama University Hospital
kn-affil=
affil-num=11
en-affil=Department of Data Science, Center for Innovative Clinical Medicine Okayama University Hospital
kn-affil=
affil-num=12
en-affil=Department of Cardiovascular Surgery Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of Pediatrics Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=14
en-affil=Department of Regenerative Medicine, Center for Innovative Clinical Medicine Okayama University Hospital
kn-affil=
affil-num=15
en-affil=
kn-affil=
en-keyword=cardiosphere
kn-keyword=cardiosphere
en-keyword=heart failure
kn-keyword=heart failure
en-keyword=restricted mean survival time
kn-keyword=restricted mean survival time
en-keyword=single ventricle
kn-keyword=single ventricle
en-keyword=survival
kn-keyword=survival
END
start-ver=1.4
cd-journal=joma
no-vol=12
cd-vols=
no-issue=573
article-no=
start-page=eabb3336
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2020
dt-pub=20201209
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Cardiosphere-derived exosomal microRNAs for myocardial repair in pediatric dilated cardiomyopathy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Although cardiosphere-derived cells (CDCs) improve cardiac function and outcomes in patients with single ventricle physiology, little is known about their safety and therapeutic benefit in children with dilated cardiomyopathy (DCM). We aimed to determine the safety and efficacy of CDCs in a porcine model of DCM and translate the preclinical results into this patient population. A swine model of DCM using intracoronary injection of microspheres created cardiac dysfunction. Forty pigs were randomized as preclinical validation of the delivery method and CDC doses, and CDC-secreted exosome (CDCex)?mediated cardiac repair was analyzed. A phase 1 safety cohort enrolled five pediatric patients with DCM and reduced ejection fraction to receive CDC infusion. The primary endpoint was to assess safety, and the secondary outcome measure was change in cardiac function. Improved cardiac function and reduced myocardial fibrosis were noted in animals treated with CDCs compared with placebo. These functional benefits were mediated via CDCex that were highly enriched with proangiogenic and cardioprotective microRNAs (miRNAs), whereas isolated CDCex did not recapitulate these reparative effects. One-year follow-up of safety lead-in stage was completed with favorable profile and preliminary efficacy outcomes. Increased CDCex-derived miR-146a-5p expression was associated with the reduction in myocardial fibrosis via suppression of proinflammatory cytokines and transcripts. Collectively, intracoronary CDC administration is safe and improves cardiac function through CDCex in a porcine model of DCM. The safety lead-in results in patients provide a translational framework for further studies of randomized trials and CDCex-derived miRNAs as potential paracrine mediators underlying this therapeutic strategy.
en-copyright=
kn-copyright=
en-aut-name=HiraiKenta
en-aut-sei=Hirai
en-aut-mei=Kenta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OusakaDaiki
en-aut-sei=Ousaka
en-aut-mei=Daiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FukushimaYosuke
en-aut-sei=Fukushima
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KondoMaiko
en-aut-sei=Kondo
en-aut-mei=Maiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=EitokuTakahiro
en-aut-sei=Eitoku
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ShigemitsuYusuke
en-aut-sei=Shigemitsu
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HaraMayuko
en-aut-sei=Hara
en-aut-mei=Mayuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=BabaKenji
en-aut-sei=Baba
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=IwasakiTatsuo
en-aut-sei=Iwasaki
en-aut-mei=Tatsuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KasaharaShingo
en-aut-sei=Kasahara
en-aut-mei=Shingo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=OhtsukiShinichi
en-aut-sei=Ohtsuki
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=OhHidemasa
en-aut-sei=Oh
en-aut-mei=Hidemasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Department of Pediatric Cardiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Pediatric Cardiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Pediatric Cardiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Pediatric Cardiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Pediatric Cardiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Pediatric Cardiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Pediatric Cardiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Pediatric Cardiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of Regenerative Medicine, Center for Innovative Clinical Medicine, Okayama University Hospital
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=116
cd-vols=
no-issue=4
article-no=
start-page=653
end-page=664
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2015
dt-pub=201502
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Intracoronary Autologous Cardiac Progenitor Cell Transfer in Patients With Hypoplastic Left Heart Syndrome (TICAP) : A Prospective Phase 1 Controlled Trial
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract= RATIONALE:
Hypoplastic left heart syndrome (HLHS) remains a lethal congenital cardiac defect. Recent studies have suggested that intracoronary administration of autologous cardiosphere-derived cells (CDCs) may improve ventricular function.
OBJECTIVE:
The aim of this study was to test whether intracoronary delivery of CDCs is feasible and safe in patients with hypoplastic left heart syndrome.
METHODS AND RESULTS:
Between January 5, 2011, and January 16, 2012, 14 patients (1.8}1.5 years) were prospectively assigned to receive intracoronary infusion of autologous CDCs 33.4}8.1 days after staged procedures (n=7), followed by 7 controls with standard palliation alone. The primary end point was to assess the safety, and the secondary end point included the preliminary efficacy to verify the right ventricular ejection fraction improvements between baseline and 3 months. Manufacturing and intracoronary delivery of CDCs were feasible, and no serious adverse events were reported within the 18-month follow-up. Patients treated with CDCs showed right ventricular ejection fraction improvement from baseline to 3-month follow-up (46.9%}4.6% to 52.1%}2.4%; P=0.008). Compared with controls at 18 months, cardiac MRI analysis of CDC-treated patients showed a higher right ventricular ejection fraction (31.5%}6.8% versus 40.4%}7.6%; P=0.049), improved somatic growth (P=0.0005), reduced heart failure status (P=0.003), and lower incidence of coil occlusion for collaterals (P=0.007).
CONCLUSIONS:
Intracoronary infusion of autologous CDCs seems to be feasible and safe in children with hypoplastic left heart syndrome after staged surgery. Large phase 2 trials are warranted to examine the potential effects of cardiac function improvements and the long-term benefits of clinical outcomes.
en-copyright=
kn-copyright=
en-aut-name=IshigamiShuta
en-aut-sei=Ishigami
en-aut-mei=Shuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OhtsukiShinichi
en-aut-sei=Ohtsuki
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TaruiSuguru
en-aut-sei=Tarui
en-aut-mei=Suguru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OusakaDaiki
en-aut-sei=Ousaka
en-aut-mei=Daiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=EitokuTakahiro
en-aut-sei=Eitoku
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KondoMaiko
en-aut-sei=Kondo
en-aut-mei=Maiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OkuyamaMichihiro
en-aut-sei=Okuyama
en-aut-mei=Michihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KobayashiJunko
en-aut-sei=Kobayashi
en-aut-mei=Junko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=BabaKenji
en-aut-sei=Baba
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=AraiSadahiko
en-aut-sei=Arai
en-aut-mei=Sadahiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=KawabataTakuya
en-aut-sei=Kawabata
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=YoshizumiKo
en-aut-sei=Yoshizumi
en-aut-mei=Ko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=TateishiAtsushi
en-aut-sei=Tateishi
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=KurokoYosuke
en-aut-sei=Kuroko
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=IwasakiTatsuo
en-aut-sei=Iwasaki
en-aut-mei=Tatsuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=SatoShuhei
en-aut-sei=Sato
en-aut-mei=Shuhei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=KasaharaShingo
en-aut-sei=Kasahara
en-aut-mei=Shingo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=SanoShunji
en-aut-sei=Sano
en-aut-mei=Shunji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=OhHidemasa
en-aut-sei=Oh
en-aut-mei=Hidemasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
affil-num=1
en-affil=Departments of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Departments of Pediatrics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Departments of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Departments of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Departments of Pediatrics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Departments of Pediatrics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Departments of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Departments of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Departments of Pediatrics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Departments of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Departments of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Departments of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Departments of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=14
en-affil=Departments of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=15
en-affil=Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=16
en-affil=Department of Radilogy, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=17
en-affil=Departments of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=18
en-affil=Departments of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=19
en-affil=Department of Regeneraive Medicine, Center for Innovative Clinical Medicine, Okayama University Hospital
kn-affil=
en-keyword=cell therapy
kn-keyword=cell therapy
en-keyword=congenital heart disease
kn-keyword=congenital heart disease
en-keyword=hypoplastic left heart syndrome
kn-keyword=hypoplastic left heart syndrome
en-keyword=stem cells
kn-keyword=stem cells
END
start-ver=1.4
cd-journal=joma
no-vol=5
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2015
dt-pub=201501
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Cell injections get to the heart of congenital defects
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=OhHidemasa
en-aut-sei=Oh
en-aut-mei=Hidemasa
kn-aut-name=€p³
kn-aut-sei=€
kn-aut-mei=p³
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=Department of Regenerative Medicine, Center for Innovative Clinical Medicine
END
start-ver=1.4
cd-journal=joma
no-vol=9
cd-vols=
no-issue=7
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2014
dt-pub=20140722
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Directed Differentiation of Patient-Specific Induced Pluripotent Stem Cells Identifies the Transcriptional Repression and Epigenetic Modification of NKX2-5, HAND1, and NOTCH1 in Hypoplastic Left Heart Syndrome
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The genetic basis of hypoplastic left heart syndrome (HLHS) remains unknown, and the lack of animal models to reconstitute the cardiac maldevelopment has hampered the study of this disease. This study investigated the altered control of transcriptional and epigenetic programs that may affect the development of HLHS by using disease-specific induced pluripotent stem (iPS) cells. Cardiac progenitor cells (CPCs) were isolated from patients with congenital heart diseases to generate patient-specific iPS cells. Comparative gene expression analysis of HLHS- and biventricle (BV) heart-derived iPS cells was performed to dissect the complex genetic circuits that may promote the disease phenotype. Both HLHS- and BV heart-derived CPCs were reprogrammed to generate disease-specific iPS cells, which showed characteristic human embryonic stem cell signatures, expressed pluripotency markers, and could give rise to cardiomyocytes. However, HLHS-iPS cells exhibited lower cardiomyogenic differentiation potential than BV-iPS cells. Quantitative gene expression analysis demonstrated that HLHS-derived iPS cells showed transcriptional repression of NKX2-5, reduced levels of TBX2 and NOTCH/HEY signaling, and inhibited HAND1/2 transcripts compared with control cells. Although both HLHS-derived CPCs and iPS cells showed reduced SRE and TNNT2 transcriptional activation compared with BV-derived cells, co-transfection of NKX2-5, HAND1, and NOTCH1 into HLHS-derived cells resulted in synergistic restoration of these promoters activation. Notably, gain- and loss-of-function studies revealed that NKX2-5 had a predominant impact on NPPA transcriptional activation. Moreover, differentiated HLHS-derived iPS cells showed reduced H3K4 dimethylation as well as histone H3 acetylation but increased H3K27 trimethylation to inhibit transcriptional activation on the NKX2-5 promoter. These findings suggest that patient-specific iPS cells may provide molecular insights into complex transcriptional and epigenetic mechanisms, at least in part, through combinatorial expression of NKX2-5, HAND1, and NOTCH1 that coordinately contribute to cardiac malformations in HLHS.
en-copyright=
kn-copyright=
en-aut-name=KobayashiJunko
en-aut-sei=Kobayashi
en-aut-mei=Junko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YoshidaMasashi
en-aut-sei=Yoshida
en-aut-mei=Masashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TaruiSuguru
en-aut-sei=Tarui
en-aut-mei=Suguru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HirataMasataka
en-aut-sei=Hirata
en-aut-mei=Masataka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NagaiYusuke
en-aut-sei=Nagai
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KasaharaShingo
en-aut-sei=Kasahara
en-aut-mei=Shingo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NaruseKeiji
en-aut-sei=Naruse
en-aut-mei=Keiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=ItoHiroshi
en-aut-sei=Ito
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=SanoShunji
en-aut-sei=Sano
en-aut-mei=Shunji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=OhHidemasa
en-aut-sei=Oh
en-aut-mei=Hidemasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=
kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Cardiovasc Surg
affil-num=2
en-affil=
kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Cardiovasc Med
affil-num=3
en-affil=
kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Cardiovasc Surg
affil-num=4
en-affil=
kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Cardiovasc Surg
affil-num=5
en-affil=
kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Cardiovasc Physiol
affil-num=6
en-affil=
kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Cardiovasc Surg
affil-num=7
en-affil=
kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Cardiovasc Physiol
affil-num=8
en-affil=
kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Cardiovasc Med
affil-num=9
en-affil=
kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Cardiovasc Surg
affil-num=10
en-affil=
kn-affil=Okayama Univ Hosp, Dept Regenerat Med, Ctr Innovat Clin Med
END
start-ver=1.4
cd-journal=joma
no-vol=124
cd-vols=
no-issue=1
article-no=
start-page=27
end-page=34
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2012
dt-pub=20120401
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=Telomere biology towards cardiac stem cell therapy in patients with heart failure
kn-title=eAΆ¨w©ηSΨΔΆγΓΜΐp»Φ
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=OhHidemasa
en-aut-sei=Oh
en-aut-mei=Hidemasa
kn-aut-name=€p³
kn-aut-sei=€
kn-aut-mei=p³
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=ͺRεwa@@VγΓ€JZ^[@ΔΆγΓ
en-keyword=stem cells
kn-keyword=stem cells
en-keyword=heart failure
kn-keyword=heart failure
en-keyword=telomere
kn-keyword=telomere
en-keyword=regeneration
kn-keyword=regeneration
en-keyword=cardiac function
kn-keyword=cardiac function
END