start-ver=1.4 cd-journal=joma no-vol=16 cd-vols= no-issue=14 article-no= start-page=4055 end-page=4070 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250922 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=CXCR4 Inhibition Induces Tumor Necrosis by Selectively Targeting the Proliferating Blood Vessels in Oral Squamous Cell Carcinoma en-subtitle= kn-subtitle= en-abstract= kn-abstract=The C-X-C chemokine receptor type 4 (CXCR4) is a G protein-coupled transmembrane receptor that contributes to tumor growth and angiogenesis. While prior studies have primarily focused on CXCR4 expression in cancer cells and its role in metastasis, a few have examined its involvement in tumor-associated vasculature. In this study, we reported for the first time that CXCR4 expression within the tumor vasculature is significantly associated with higher pathological grades of human oral squamous cell carcinoma (OSCC) (p<0.03). A previous study reported that inhibiting CXCR4 with AMD3100 induces tumor cell death and enhances the efficacy of the chemotherapeutic agent cisplatin. These findings suggest that CXCR4 is an important target for cancer treatment. However, the tumor vascular system is known to be heterogeneous within the tumor microenvironment (TME), which may influence the treatment outcomes. Therefore, this study aimed to explore the effect of CXCR4 antagonism on various blood vessels present within the oral squamous cell carcinoma (OSCC) tumor stroma. Although the efficiency of AMD3100 was not significant in MOC cancer cells, necrosis was induced in the TME when applied to a poorly differentiated OSCC model, highlighting the role of the TME. Notably, CXCR4 is found to be highly overlapped with CD105+ angiogenic tumor vessels among various vascular markers. Treatment with AMD3100 leads to a marked reduction in the CD105+ vessels and impairs the maturation of tumor micro-vessels, explaining the cause of observed necrosis. Thus, CXCR4 serves as a promising biomarker in OSCC, and its inhibition with AMD3100 offers the therapeutic potential, particularly in cases with advanced pathological grades. en-copyright= kn-copyright= en-aut-name=SoeYamin en-aut-sei=Soe en-aut-mei=Yamin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KawaiHotaka en-aut-sei=Kawai en-aut-mei=Hotaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=EainHtoo Shwe en-aut-sei=Eain en-aut-mei=Htoo Shwe kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YoshidaSaori en-aut-sei=Yoshida en-aut-mei=Saori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OoMay Wathone en-aut-sei=Oo en-aut-mei=May Wathone kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MinZin Zin en-aut-sei=Min en-aut-mei=Zin Zin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TakabatakeKiyofumi en-aut-sei=Takabatake en-aut-mei=Kiyofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NakanoKeisuke en-aut-sei=Nakano en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NagatsukaHitoshi en-aut-sei=Nagatsuka en-aut-mei=Hitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University kn-affil= affil-num=2 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University kn-affil= affil-num=3 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University kn-affil= affil-num=4 en-affil=Preliminary Examination Room, Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of Pathophysiology and Drug Discovery, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University kn-affil= affil-num=6 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University kn-affil= affil-num=7 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University kn-affil= affil-num=8 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University kn-affil= affil-num=9 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University kn-affil= en-keyword=CXCR4 kn-keyword=CXCR4 en-keyword=tumor angiogenesis kn-keyword=tumor angiogenesis en-keyword=chemokine receptors kn-keyword=chemokine receptors en-keyword=tumor microenvironment kn-keyword=tumor microenvironment en-keyword=oral squamous cell carcinoma (OSCC) kn-keyword=oral squamous cell carcinoma (OSCC) en-keyword=AMD3100 kn-keyword=AMD3100 END start-ver=1.4 cd-journal=joma no-vol=28 cd-vols= no-issue=4 article-no= start-page=51 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250930 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Cancer-associated fibroblast-derived SOD3 enhances lymphangiogenesis to drive metastasis in lung adenocarcinoma en-subtitle= kn-subtitle= en-abstract= kn-abstract=Despite advancements in diagnostic and therapeutic strategies, lung adenocarcinoma (LUAD) remains a leading cause of cancer-related mortality due to its aggressive metastatic potential. Extracellular superoxide dismutase (SOD3) is an antioxidant enzyme that regulates oxidative stress and is regarded as a tumor suppressor. However, studies have demonstrated that SOD3 can either promote or inhibit cell proliferation and survival in various cancers, and its molecular mechanisms within the tumor microenvironment are poorly understood. In this study, we report a breakthrough in uncovering the role of SOD3 derived from cancer-associated fibroblasts (CAFs) in LUAD. Using LUAD xenograft models co-implanted with SOD3-overexpressing CAFs (CAFSOD3), we observe an aggressive tumor phenotype characterized by increased lymphangiogenesis and lymphatic vessel invasion (LVI) of the tumor. Additionally, LUAD patients with elevated SOD3 levels exhibit a higher incidence of LVI and metastasis. Notably, RNA sequencing of CAFSOD3 reveals that SOD3-mediated VEGF-dependent tumor progression and lymphangiogenesis are up-regulated. Furthermore, single-cell transcriptomic analysis of LUAD clinical samples confirms a strong correlation between SOD3 expression in fibroblasts and characteristics of tumor exacerbation, such as lymphangiogenesis and metastasis. These findings underscore new insights into the role of CAF-derived SOD3 in LUAD progression and highlight its potential as a biomarker and therapeutic target. en-copyright= kn-copyright= en-aut-name=OoMay Wathone en-aut-sei=Oo en-aut-mei=May Wathone kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HikitaTakao en-aut-sei=Hikita en-aut-mei=Takao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MashimaTomoha en-aut-sei=Mashima en-aut-mei=Tomoha kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TorigataKosuke en-aut-sei=Torigata en-aut-mei=Kosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ThuYin Min en-aut-sei=Thu en-aut-mei=Yin Min kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HabuTomohiro en-aut-sei=Habu en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KawaiHotaka en-aut-sei=Kawai en-aut-mei=Hotaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OharaToshiaki en-aut-sei=Ohara en-aut-mei=Toshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TomidaShuta en-aut-sei=Tomida en-aut-mei=Shuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=ItoSachio en-aut-sei=Ito en-aut-mei=Sachio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=SuzawaKen en-aut-sei=Suzawa en-aut-mei=Ken kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=NagatsukaHitoshi en-aut-sei=Nagatsuka en-aut-mei=Hitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=ToyookaShinichi en-aut-sei=Toyooka en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=NakayamaMasanori en-aut-sei=Nakayama en-aut-mei=Masanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= affil-num=1 en-affil=Department of Pathophysiology and Drug Discovery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Pathophysiology and Drug Discovery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Pathophysiology and Drug Discovery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=School of Medicine, Kobe University kn-affil= affil-num=5 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Center for Comprehensive Genomic Medicine, Okayama University Hospital kn-affil= affil-num=10 en-affil=Department of Pathophysiology and Drug Discovery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=11 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=12 en-affil=Department of Thoracic Surgery, National Hospital Organization, Shikoku Cancer Center kn-affil= affil-num=13 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=14 en-affil=Department of Pathophysiology and Drug Discovery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Cancer-associated fibroblast kn-keyword=Cancer-associated fibroblast en-keyword=Superoxide dismutase 3 kn-keyword=Superoxide dismutase 3 en-keyword=Lymphangiogenesis kn-keyword=Lymphangiogenesis en-keyword=Angiogenesis kn-keyword=Angiogenesis en-keyword=Metastasis kn-keyword=Metastasis en-keyword=Lung adenocarcinoma kn-keyword=Lung adenocarcinoma END start-ver=1.4 cd-journal=joma no-vol=9 cd-vols= no-issue=10 article-no= start-page=e174618 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240522 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Double-faced CX3CL1 enhances lymphangiogenesis-dependent metastasis in an aggressive subclone of oral squamous cell carcinoma en-subtitle= kn-subtitle= en-abstract= kn-abstract=Because cancer cells have a genetically unstable nature, they give rise to genetically different variant subclones inside a single tumor. Understanding cancer heterogeneity and subclone characteristics is crucial for developing more efficacious therapies. Oral squamous cell carcinoma (OSCC) is characterized by high heterogeneity and plasticity. On the other hand, CX3C motif ligand 1 (CX3CL1) is a double-faced chemokine with anti- and pro -tumor functions. Our study reported that CX3CL1 functioned differently in tumors with different cancer phenotypes, both in vivo and in vitro. Mouse OSCC 1 (MOC1) and MOC2 cells responded similarly to CX3CL1 in vitro. However, in vivo, CX3CL1 increased keratinization in indolent MOC1 cancer, while CX3CL1 promoted cervical lymphatic metastasis in aggressive MOC2 cancer. These outcomes were due to double-faced CX3CL1 effects on different immune microenvironments indolent and aggressive cancer created. Furthermore, we established that CX3CL1 promoted cancer metastasis via the lymphatic pathway by stimulating lymphangiogenesis and transendothelial migration of lymph -circulating tumor cells. CX3CL1 enrichment in lymphatic metastasis tissues was observed in aggressive murine and human cell lines. OSCC patient samples with CX3CL1 enrichment exhibited a strong correlation with lower overall survival rates and higher recurrence and distant metastasis rates. In conclusion, CX3CL1 is a pivotal factor that stimulates the metastasis of aggressive cancer subclones within the heterogeneous tumors to metastasize, and our study demonstrates the prognostic value of CX3CL1 enrichment in long-term monitoring in OSCC. en-copyright= kn-copyright= en-aut-name=EainHtoo Shwe en-aut-sei=Eain en-aut-mei=Htoo Shwe kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KawaiHotaka en-aut-sei=Kawai en-aut-mei=Hotaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakayamaMasaaki en-aut-sei=Nakayama en-aut-mei=Masaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OoMay Wathone en-aut-sei=Oo en-aut-mei=May Wathone kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OharaToshiaki en-aut-sei=Ohara en-aut-mei=Toshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=FukuharaYoko en-aut-sei=Fukuhara en-aut-mei=Yoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TakabatakeKiyofumi en-aut-sei=Takabatake en-aut-mei=Kiyofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ShanQuisheng en-aut-sei=Shan en-aut-mei=Quisheng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SoeYamin en-aut-sei=Soe en-aut-mei=Yamin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=OnoKisho en-aut-sei=Ono en-aut-mei=Kisho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=NakanoKeisuke en-aut-sei=Nakano en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=MizukawaNobuyoshi en-aut-sei=Mizukawa en-aut-mei=Nobuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=IidaSeiji en-aut-sei=Iida en-aut-mei=Seiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=NagatsukaHitoshi en-aut-sei=Nagatsuka en-aut-mei=Hitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= affil-num=1 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Oral Microbiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama Universit kn-affil= affil-num=6 en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=11 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=12 en-affil=Department of Oral and Maxillofacial Reconstructive Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=13 en-affil=Department of Oral and Maxillofacial Reconstructive Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=14 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=24 cd-vols= no-issue=5 article-no= start-page=382 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220913 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Investigation of bone invasion and underlying mechanisms of oral cancer using a cell line?derived xenograft model en-subtitle= kn-subtitle= en-abstract= kn-abstract=The cancer stroma regulates bone invasion in oral squamous cell carcinoma (OSCC). However, data on normal stroma are limited. In the present study, the effects of gingival and periodontal ligament tissue?derived stromal cells (G?SCs and P?SCs, respectively) and human dermal fibroblasts (HDFs) on bone resorption and osteoclast activation were assessed using hematoxylin and eosin and tartrate?resistant acid phosphatase staining in a cell line?derived xenograft model. The results demonstrated that G?SCs promoted bone invasion and osteoclast activation and inhibited osteoclast proliferation following crosstalk with the human OSCC HSC?3 cell line, whereas P?SCs inhibited bone resorption and promoted osteoclast proliferation in vitro but had a minimal effect on osteoclast activation both in vitro and in vivo following crosstalk with HSC?3 cells. Furthermore, the effects of G?SCs, P?SCs and HDFs on protein expression levels of matrix metalloproteinase (MMP)?9, membrane type 1 MMP (MT1?MMP), Snail, parathyroid hormone?related peptide (PTHrP) and receptor activator of NF?ƒÈB ligand (RANKL) in HSC?3 cells in OSCC bone invasion regions were assessed using immunohistochemistry. The results demonstrated that G?SCs had a more prominent effect on the expression of MMP?9, MT1?MMP, Snail, PTHrP, and RANKL, whereas P?SCs only promoted RANKL and PTHrP expression and exerted a minimal effect on MMP?9, MT1?MMP and Snail expression. The potential genes underlying the differential effects of G?SCs and P?SCs on bone invasion in OSCC were evaluated using a microarray, which indicated that cyclin?dependent kinase 1, insulin, aurora kinase A, cyclin B1 and DNA topoisomerase II alpha underlaid these differential effects. Therefore, these results demonstrated that G?SCs promoted bone invasion in OSCC by activating osteoclasts on the bone surface, whereas P?SCs exerted an inhibitory effect. These findings could indicate a potential regulatory mechanism for bone invasion in OSCC. en-copyright= kn-copyright= en-aut-name=ShanQiusheng en-aut-sei=Shan en-aut-mei=Qiusheng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakabatakeKiyofumi en-aut-sei=Takabatake en-aut-mei=Kiyofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OmoriHaruka en-aut-sei=Omori en-aut-mei=Haruka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KawaiHotaka en-aut-sei=Kawai en-aut-mei=Hotaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OoMay Wathone en-aut-sei=Oo en-aut-mei=May Wathone kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SukegawaShintaro en-aut-sei=Sukegawa en-aut-mei=Shintaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=FujiiMasae en-aut-sei=Fujii en-aut-mei=Masae kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=InadaYasunori en-aut-sei=Inada en-aut-mei=Yasunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SanoSho en-aut-sei=Sano en-aut-mei=Sho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=NakanoKeisuke en-aut-sei=Nakano en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=NagatsukaHitoshi en-aut-sei=Nagatsuka en-aut-mei=Hitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=oral squamous cell carcinoma kn-keyword=oral squamous cell carcinoma en-keyword=bone invasion kn-keyword=bone invasion en-keyword=gingival ligament tissue?derived stromal cell kn-keyword=gingival ligament tissue?derived stromal cell en-keyword=periodontal ligament tissue?derived stromal cell kn-keyword=periodontal ligament tissue?derived stromal cell en-keyword=xenograft model kn-keyword=xenograft model en-keyword=microarray kn-keyword=microarray END start-ver=1.4 cd-journal=joma no-vol=47 cd-vols= no-issue=4 article-no= start-page=81 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220224 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Significance of cancer stroma for bone destruction in oral squamous cell carcinoma using different cancer stroma subtypes en-subtitle= kn-subtitle= en-abstract= kn-abstract=Stromal cells in the tumor microenvironment (TME) can regulate the progression of numerous types of cancer; however, the bone invasion of oral squamous cell carcinoma (OSCC) has been poorly investigated. In the present study, the effect of verrucous SCC?associated stromal cells (VSCC?SCs), SCC?associated stromal cells (SCC?SCs) and human dermal fibroblasts on bone resorption and the activation of HSC?3 osteoclasts in vivo were examined by hematoxylin and eosin, AE1/3 (pan?cytokeratin) and tartrate?resistant acid phosphatase staining. In addition, the expression levels of matrix metalloproteinase (MMP)9, membrane?type 1 MMP (MT1?MMP), Snail, receptor activator of NF?ƒÈB ligand (RANKL) and parathyroid hormone?related peptide (PTHrP) in the bone invasion regions of HSC?3 cells were examined by immunohistochemistry. The results suggested that both SCC?SCs and VSCC?SCs promoted bone resorption, the activation of osteoclasts, and the expression levels of MMP9, MT1?MMP, Snail, RANKL and PTHrP. However, SCC?SCs had a more prominent effect compared with VSCC?SCs. Finally, microarray data were used to predict potential genes underlying the differential effects of VSCC?SCs and SCC?SCs on bone invasion in OSCC. The results revealed that IL1B, ICAM1, FOS, CXCL12, INS and NGF may underlie these differential effects. In conclusion, both VSCC?SCs and SCC?SCs may promote bone invasion in OSCC by enhancing the expression levels of RANKL in cancer and stromal cells mediated by PTHrP; however, SCC?SCs had a more prominent effect. These findings may represent a potential regulatory mechanism underlying the bone invasion of OSCC. en-copyright= kn-copyright= en-aut-name=ShanQiusheng en-aut-sei=Shan en-aut-mei=Qiusheng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakabatakeKiyofumi en-aut-sei=Takabatake en-aut-mei=Kiyofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KawaiHotaka en-aut-sei=Kawai en-aut-mei=Hotaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OoMay Wathone en-aut-sei=Oo en-aut-mei=May Wathone kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=InadaYasunori en-aut-sei=Inada en-aut-mei=Yasunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SukegawaShintaro en-aut-sei=Sukegawa en-aut-mei=Shintaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=FushimiShigeko en-aut-sei=Fushimi en-aut-mei=Shigeko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NakanoKeisuke en-aut-sei=Nakano en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NagatsukaHitoshi en-aut-sei=Nagatsuka en-aut-mei=Hitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Oral and Maxillofacial Surgery, Kagawa Prefectural Central Hospital kn-affil= affil-num=7 en-affil=Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=oral squamous cell carcinoma kn-keyword=oral squamous cell carcinoma en-keyword=bone invasion kn-keyword=bone invasion en-keyword=osteoclast kn-keyword=osteoclast en-keyword=receptor activator of NF?ƒÈB ligand kn-keyword=receptor activator of NF?ƒÈB ligand en-keyword=parathyroid hormone?related peptide kn-keyword=parathyroid hormone?related peptide en-keyword=microarray kn-keyword=microarray en-keyword=cancer?associated stromal cells kn-keyword=cancer?associated stromal cells END start-ver=1.4 cd-journal=joma no-vol=10 cd-vols= no-issue=11 article-no= start-page=2729 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20221028 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=SOD3 Expression in Tumor Stroma Provides the Tumor Vessel Maturity in Oral Squamous Cell Carcinoma en-subtitle= kn-subtitle= en-abstract= kn-abstract=Tumor angiogenesis is one of the hallmarks of solid tumor development. The progressive tumor cells produce the angiogenic factors and promote tumor angiogenesis. However, how the tumor stromal cells influence tumor vascularization is still unclear. In the present study, we evaluated the effects of oral squamous cell carcinoma (OSCC) stromal cells on tumor vascularization. The tumor stromal cells were isolated from two OSCC patients with different subtypes: low invasive verrucous squamous carcinoma (VSCC) and highly invasive squamous cell carcinoma (SCC) and co-xenografted with the human OSCC cell line (HSC-2) on nude mice. In comparison, the CD34+ vessels in HSC-2+VSCC were larger than in HSC-2+SCC. Interestingly, the vessels in the HSC-2+VSCC expressed vascular endothelial cadherin (VE-cadherin), indicating well-formed vascularization. Our microarray data revealed that the expression of extracellular superoxide dismutase, SOD3 mRNA is higher in VSCC stromal cells than in SCC stromal cells. Moreover, we observed that SOD3 colocalized with VE-cadherin on endothelial cells of low invasive stroma xenograft. These data suggested that SOD3 expression in stromal cells may potentially regulate tumor vascularization in OSCC. Thus, our study suggests the potential interest in SOD3-related vascular integrity for a better OSCC therapeutic strategy. en-copyright= kn-copyright= en-aut-name=OoMay Wathone en-aut-sei=Oo en-aut-mei=May Wathone kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KawaiHotaka en-aut-sei=Kawai en-aut-mei=Hotaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=EainHtoo Shwe en-aut-sei=Eain en-aut-mei=Htoo Shwe kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SoeYamin en-aut-sei=Soe en-aut-mei=Yamin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakabatakeKiyofumi en-aut-sei=Takabatake en-aut-mei=Kiyofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SanouSho en-aut-sei=Sanou en-aut-mei=Sho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ShanQiusheng en-aut-sei=Shan en-aut-mei=Qiusheng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=InadaYasunori en-aut-sei=Inada en-aut-mei=Yasunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=FujiiMasae en-aut-sei=Fujii en-aut-mei=Masae kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=FukuharaYoko en-aut-sei=Fukuhara en-aut-mei=Yoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=WangZiyi en-aut-sei=Wang en-aut-mei=Ziyi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=SukegawaShintaro en-aut-sei=Sukegawa en-aut-mei=Shintaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=OnoMitsuaki en-aut-sei=Ono en-aut-mei=Mitsuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=NakanoKeisuke en-aut-sei=Nakano en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=NagatsukaHitoshi en-aut-sei=Nagatsuka en-aut-mei=Hitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= affil-num=1 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, kn-affil= affil-num=11 en-affil=Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=12 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=13 en-affil=Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=14 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=15 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=oral squamous cell carcinoma kn-keyword=oral squamous cell carcinoma en-keyword=tumor microenvironment kn-keyword=tumor microenvironment en-keyword=tumor stroma kn-keyword=tumor stroma en-keyword=tumor vascularization kn-keyword=tumor vascularization en-keyword=extracellular superoxide dismutase (SOD3) kn-keyword=extracellular superoxide dismutase (SOD3) en-keyword=vascular endothelial cadherin (Ve-cadherin) kn-keyword=vascular endothelial cadherin (Ve-cadherin) END start-ver=1.4 cd-journal=joma no-vol=7 cd-vols= no-issue=1 article-no= start-page=e148960 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220111 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Resident stroma-secreted chemokine CCL2 governs myeloid-derived suppressor cells in the tumor microenvironment en-subtitle= kn-subtitle= en-abstract= kn-abstract=Accumulating evidence has shown that cancer stroma and BM-derived cells (BMDCs) in the tumor microenvironment (TME) play vital roles in tumor progression. However, the mechanism by which oral cancer stroma recruits any particular subset of BMDCs remains largely unknown. Here, we sought to identify the subset of BMDCs that is recruited by cancer stroma. We established a sequential transplantation model in BALB/c nude mice, including (a) BM transplantation of GFP-expressing cells and (b) coxenografting of patient-derived stroma (PDS; 2 cases, designated PDS1 and PDS2) with oral cancer cells (HSC-2). As controls, xenografting was performed with HSC-2 alone or in combination with normal human dermal fibroblasts (HDF). PDS1, PDS2, and HDF all promoted BMDC migration in vitro and recruitment in vivo. Multicolor immunofluorescence revealed that the PDS coxenografts recruited Arginase-1(+)CD11b(+)GR1(+)GFP(+) cells, which are myeloid-derived suppressor cells (MDSCs), to the TME, whereas the HDF coxenograft did not. Screening using microarrays revealed that PDS1 and PDS2 expressed CCL2 mRNA (encoding C-C motif chemokine ligand 2) at higher levels than did HDF. Indeed, PDS xenografts contained significantly higher proportions of CCL2(+) stromal cells and CCR2(+)Arginase-1(+)CD11b(+)GR1(+) MDSCs (as receiver cells) than the HDF coxenograft. Consistently, a CCL2 synthesis inhibitor and a CCR2 antagonist significantly inhibited the PDS-driven migration of BM cells in vitro. Furthermore, i.p. injection of the CCR2 antagonist to the PDS xenograft models significantly reduced the CCR2(+)Arginase-1(+)CD11b(+)GR1(+) MDSC infiltration to the TME. In conclusion, oral cancer stroma-secreted CCL2 is a key signal for recruiting CCR2(+) MDSCs from BM to the TME. en-copyright= kn-copyright= en-aut-name=OoMay Wathone en-aut-sei=Oo en-aut-mei=May Wathone kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KawaiHotaka en-aut-sei=Kawai en-aut-mei=Hotaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TakabatakeKiyofumi en-aut-sei=Takabatake en-aut-mei=Kiyofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TomidaShuta en-aut-sei=Tomida en-aut-mei=Shuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=EguchiTakanori en-aut-sei=Eguchi en-aut-mei=Takanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OnoKisho en-aut-sei=Ono en-aut-mei=Kisho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ShanQiusheng en-aut-sei=Shan en-aut-mei=Qiusheng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OharaToshiaki en-aut-sei=Ohara en-aut-mei=Toshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=YoshidaSaori en-aut-sei=Yoshida en-aut-mei=Saori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=OmoriHaruka en-aut-sei=Omori en-aut-mei=Haruka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=SukegawaShintaro en-aut-sei=Sukegawa en-aut-mei=Shintaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=NakanoKeisuke en-aut-sei=Nakano en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=OkamotoKuniaki en-aut-sei=Okamoto en-aut-mei=Kuniaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=SasakiAkira en-aut-sei=Sasaki en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=NagatsukaHitoshi en-aut-sei=Nagatsuka en-aut-mei=Hitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= affil-num=1 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Center for Comprehensive Genomic Medicine, Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=11 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=12 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=13 en-affil=Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=14 en-affil=Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=15 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=1 article-no= start-page=137 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20211228 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Cancer-Associated Stromal Cells Promote the Contribution of MMP2-Positive Bone Marrow-Derived Cells to Oral Squamous Cell Carcinoma Invasion en-subtitle= kn-subtitle= en-abstract= kn-abstract=Simple Summary Based on its invasiveness, oral squamous cell carcinoma (OSCC) shows two different subtypes: less-invasive verrucous squamous carcinoma (VSCC) or highly invasive squamous cell carcinoma (SCC). The stromal component influences OSCC progression and invasion. On the other hand, bone marrow-derived cells (BMDCs) are recruited into tumors and involved in tumor development. We hypothesized that stromal factors might also affect the relation of BMDCs and tumor invasion. We established the OSCC models transplanted with stromal cells from VSCC and SCC, and we compared the potential stromal factors of VSCC and SCC for the involvement of BMDCs in tumor invasion. Our study showed that stromal factors IL6 and IL1B might promote the contribution of MMP-2 positive BMDCs to OSCC invasion. Tumor stromal components contribute to tumor development and invasion. However, the role of stromal cells in the contribution of bone marrow-derived cells (BMDCs) in oral squamous cell carcinoma (OSCC) invasion is unclear. In the present study, we created two different invasive OSCC patient-derived stroma xenografts (PDSXs) and analyzed and compared the effects of stromal cells on the relation of BMDCs and tumor invasion. We isolated stromal cells from two OSCC patients: less invasive verrucous OSCC (VSCC) and highly invasive conventional OSCC (SCC) and co-xenografted with the OSCC cell line (HSC-2) on green fluorescent protein (GFP)-positive bone marrow (BM) cells transplanted mice. We traced the GFP-positive BM cells by immunohistochemistry (IHC) and detected matrix metalloproteinase 2 (MMP2) expression on BM cells by double fluorescent IHC. The results indicated that the SCC-PDSX promotes MMP2-positive BMDCs recruitment to the invasive front line of the tumor. Furthermore, microarray analysis revealed that the expressions of interleukin 6; IL-6 mRNA and interleukin 1 beta; IL1B mRNA were higher in SCC stromal cells than in VSCC stromal cells. Thus, our study first reports that IL-6 and IL1B might be the potential stromal factors promoting the contribution of MMP2-positive BMDCs to OSCC invasion. en-copyright= kn-copyright= en-aut-name=OoMay Wathone en-aut-sei=Oo en-aut-mei=May Wathone kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KawaiHotaka en-aut-sei=Kawai en-aut-mei=Hotaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TakabatakeKiyofumi en-aut-sei=Takabatake en-aut-mei=Kiyofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ShanQiusheng en-aut-sei=Shan en-aut-mei=Qiusheng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=EainHtoo Shwe en-aut-sei=Eain en-aut-mei=Htoo Shwe kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SukegawaShintaro en-aut-sei=Sukegawa en-aut-mei=Shintaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NakanoKeisuke en-aut-sei=Nakano en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NagatsukaHitoshi en-aut-sei=Nagatsuka en-aut-mei=Hitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=oral squamous cell carcinoma invasion kn-keyword=oral squamous cell carcinoma invasion en-keyword=patient-derived stromal cell xenograft (PDSX) kn-keyword=patient-derived stromal cell xenograft (PDSX) en-keyword=bone marrow-derived cells (BMDCs) kn-keyword=bone marrow-derived cells (BMDCs) en-keyword=MMP2 kn-keyword=MMP2 en-keyword=stromal factor IL-6 kn-keyword=stromal factor IL-6 en-keyword=stromal factor IL1B kn-keyword=stromal factor IL1B END start-ver=1.4 cd-journal=joma no-vol=3 cd-vols= no-issue=2 article-no= start-page=6 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Secretory Carcinoma of Salivary Gland with High-Grade Histology Arising in Hard Palate: A Case Report en-subtitle= kn-subtitle= en-abstract= kn-abstract=Secretory carcinoma (SC) is a recently described salivary gland tumor reported in the fourth edition of World Health Organization classification of head and neck tumors. SC is characterized by strong S-100 protein, mammaglobin, and vimentin immunoexpression, and harbors a t(12;15)(p13;q25) translocation which leads to ETV6-NTRK3 fusion product. Histologically, SC displays a lobulated growth pattern and is often composed of microcystic, tubular, and solid structures with abundant eosinophilic homogenous or bubbly secretion. SC is generally recognized as low-grade malignancy with low-grade histopathologic features, and metastasis is relatively uncommon. In this case, we described a SC of hard palate that underwent high grade transformation and metastasis to the cervical lymph node in a 54-year-old patient. In addition, this case showed different histological findings between primary lesion and metastasis lesion. Therefore, the diagnosis was confirmed by the presence of ETV6 translocation. Here, we report a case that occurred SC with high-grade transformation in the palate, and a review of the relevant literature is also presented. en-copyright= kn-copyright= en-aut-name=TakabatakeKiyofumi en-aut-sei=Takabatake en-aut-mei=Kiyofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakanoKeisuke en-aut-sei=Nakano en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KawaiHotaka en-aut-sei=Kawai en-aut-mei=Hotaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YoshidaSaori en-aut-sei=Yoshida en-aut-mei=Saori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OmoriHaruka en-aut-sei=Omori en-aut-mei=Haruka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OoMay Wathone en-aut-sei=Oo en-aut-mei=May Wathone kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=QiushengShan en-aut-sei=Qiusheng en-aut-mei=Shan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=UchidaKenichiro en-aut-sei=Uchida en-aut-mei=Kenichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MishimaKatsuaki en-aut-sei=Mishima en-aut-mei=Katsuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=NagatsukaHitoshi en-aut-sei=Nagatsuka en-aut-mei=Hitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Oral Pathology and Medicine Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Oral Pathology and Medicine Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Oral Pathology and Medicine Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Oral Pathology and Medicine Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Oral Pathology and Medicine Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Oral Pathology and Medicine Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Oral Pathology and Medicine Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Oral and Maxillofacial Surgery, Yamaguchi University Graduate School of Medicine kn-affil= affil-num=9 en-affil=Department of Oral and Maxillofacial Surgery, Yamaguchi University Graduate School of Medicine kn-affil= affil-num=10 en-affil=Department of Oral Pathology and Medicine Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=secretory carcinoma kn-keyword=secretory carcinoma en-keyword=high-grade transformation kn-keyword=high-grade transformation en-keyword=ETV6-NTRK3 fusion kn-keyword=ETV6-NTRK3 fusion en-keyword=cervical lymph node metastasis kn-keyword=cervical lymph node metastasis END start-ver=1.4 cd-journal=joma no-vol=18 cd-vols= no-issue=8 article-no= start-page=1824 end-page=1830 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210219 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Potential role of myeloid-derived suppressor cells in transition from reaction to repair phase of bone healing process en-subtitle= kn-subtitle= en-abstract= kn-abstract=Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells with immunosuppressive functions; these cells play a key role in infection, immunization, chronic inflammation, and cancer. Recent studies have reported that immunosuppression plays an important role in the healing process of tissues and that Treg play an important role in fracture healing. MDSCs suppress active T cell proliferation and reduce the severity of arthritis in mice and humans. Together, these findings suggest that MDSCs play a role in bone biotransformation. In the present study, we examined the role of MDSCs in the bone healing process by creating a bone injury at the tibial epiphysis in mice. MDSCs were identified by CD11b and GR1 immunohistochemistry and their role in new bone formation was observed by detection of Runx2 and osteocalcin expression. Significant numbers of MDSCs were observed in transitional areas from the reactionary to repair stages. Interestingly, MDSCs exhibited Runx2 and osteocalcin expression in the transitional area but not in the reactionary area. And at the same area, cllagene-1 and ALP expression level increased in osteoblast progenitor cells. These data is suggesting that MDSCs emerge to suppress inflammation and support new bone formation. Here, we report, for the first time (to our knowledge), the role of MDSCs in the initiation of bone formation. MDSC appeared at the transition from inflammation to bone making and regulates bone healing by suppressing inflammation. en-copyright= kn-copyright= en-aut-name=KawaiHotaka en-aut-sei=Kawai en-aut-mei=Hotaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OoMay Wathone en-aut-sei=Oo en-aut-mei=May Wathone kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TsujigiwaHidetsugu en-aut-sei=Tsujigiwa en-aut-mei=Hidetsugu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NakanoKeisuke en-aut-sei=Nakano en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakabatakeKiyofumi en-aut-sei=Takabatake en-aut-mei=Kiyofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SukegawaShintaro en-aut-sei=Sukegawa en-aut-mei=Shintaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NagatsukaHitoshi en-aut-sei=Nagatsuka en-aut-mei=Hitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Life Science, Faculty of Science, Okayama University of Science kn-affil= affil-num=4 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=myeloid-derived suppressor cells (MDSC) kn-keyword=myeloid-derived suppressor cells (MDSC) en-keyword=bone healing kn-keyword=bone healing en-keyword=transition period kn-keyword=transition period en-keyword=new bone formation kn-keyword=new bone formation END start-ver=1.4 cd-journal=joma no-vol=21 cd-vols= no-issue=20 article-no= start-page=7714 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20201018 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Impact of the Stroma on the Biological Characteristics of the Parenchyma in Oral Squamous Cell Carcinoma en-subtitle= kn-subtitle= en-abstract= kn-abstract=Solid tumors consist of the tumor parenchyma and stroma. The standard concept of oncology is that the tumor parenchyma regulates the tumor stroma and promotes tumor progression, and that the tumor parenchyma represents the tumor itself and defines the biological characteristics of the tumor tissue. Thus, the tumor stroma plays a pivotal role in assisting tumor parenchymal growth and invasiveness and is regarded as a supporter of the tumor parenchyma. The tumor parenchyma and stroma interact with each other. However, the influence of the stroma on the parenchyma is not clear. Therefore, in this study, we investigated the effect of the stroma on the parenchyma in oral squamous cell carcinoma (OSCC). We isolated tumor stroma from two types of OSCCs with different invasiveness (endophytic type OSCC (ED-st) and exophytic type OSCC (EX-st)) and examined the effect of the stroma on the parenchyma in terms of proliferation, invasion, and morphology by co-culturing and co-transplanting the OSCC cell line (HSC-2) with the two types of stroma. Both types of stroma were partially positive for alpha-smooth muscle actin. The tumor stroma increased the proliferation and invasion of tumor cells and altered the morphology of tumor cells in vitro and in vivo. ED-st exerted a greater effect on the tumor parenchyma in proliferation and invasion than EX-st. Morphological analysis showed that ED-st changed the morphology of HSC-2 cells to the invasive type of OSCC, and EX-st altered the morphology of HSC-2 cells to verrucous OSCC. This study suggests that the tumor stroma influences the biological characteristics of the parenchyma and that the origin of the stroma is strongly associated with the biological characteristics of the tumor. en-copyright= kn-copyright= en-aut-name=TakabatakeKiyofumi en-aut-sei=Takabatake en-aut-mei=Kiyofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KawaiHotaka en-aut-sei=Kawai en-aut-mei=Hotaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OmoriHaruka en-aut-sei=Omori en-aut-mei=Haruka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=QiushengShan en-aut-sei=Qiusheng en-aut-mei=Shan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OoMay Wathone en-aut-sei=Oo en-aut-mei=May Wathone kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SukegawaShintaro en-aut-sei=Sukegawa en-aut-mei=Shintaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NakanoKeisuke en-aut-sei=Nakano en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TsujigiwaHidetsugu en-aut-sei=Tsujigiwa en-aut-mei=Hidetsugu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NagatsukaHitoshi en-aut-sei=Nagatsuka en-aut-mei=Hitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Oral Pathology and Medicine Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University kn-affil= affil-num=2 en-affil=Department of Oral Pathology and Medicine Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University kn-affil= affil-num=3 en-affil=Department of Oral Pathology and Medicine Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University kn-affil= affil-num=4 en-affil=Department of Oral Pathology and Medicine Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University kn-affil= affil-num=5 en-affil=Department of Oral Pathology and Medicine Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University kn-affil= affil-num=6 en-affil=Department of Oral Pathology and Medicine Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University kn-affil= affil-num=7 en-affil=Department of Oral Pathology and Medicine Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University kn-affil= affil-num=8 en-affil=Department of Oral Pathology and Medicine Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University kn-affil= affil-num=9 en-affil=Department of Oral Pathology and Medicine Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University kn-affil= en-keyword=tumor stroma kn-keyword=tumor stroma en-keyword=tumor parenchyma kn-keyword=tumor parenchyma en-keyword=tumor microenvironment kn-keyword=tumor microenvironment en-keyword=biological characteristics kn-keyword=biological characteristics END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue=5 article-no= start-page=1260 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200516 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Knockout of MMP3 Weakens Solid Tumor Organoids and Cancer Extracellular Vesicles en-subtitle= kn-subtitle= en-abstract= kn-abstract=The tumor organoid (tumoroid) model in three-dimensional (3D) culture systems has been developed to reflect more closely the in vivo tumors than 2D-cultured tumor cells. Notably, extracellular vesicles (EVs) are efficiently collectible from the culture supernatant of gel-free tumoroids. Matrix metalloproteinase (MMP) 3 is a multi-functional factor playing crucial roles in tumor progression. However, roles of MMP3 within tumor growth and EVs have not unveiled. Here, we investigated the protumorigenic roles of MMP3 on integrities of tumoroids and EVs. We generated MMP3-knockout (KO) cells using the CRISPR/Cas9 system from rapidly metastatic LuM1 tumor cells. Moreover, we established fluorescent cell lines with palmitoylation signal-fused fluorescent proteins (tdTomato and enhanced GFP). Then we confirmed the exchange of EVs between cellular populations and tumoroids. LuM1-tumoroids released large EVs (200-1000 nm) and small EVs (50-200 nm) while the knockout of MMP3 resulted in the additional release of broken EVs from tumoroids. The loss of MMP3 led to a significant reduction in tumoroid size and the development of the necrotic area within tumoroids. MMP3 and CD9 (a category-1 EV marker tetraspanin protein) were significantly down-regulated in MMP3-KO cells and their EV fraction. Moreover, CD63, another member of the tetraspanin family, was significantly reduced only in the EVs fractions of the MMP3-KO cells compared to their counterpart. These weakened phenotypes of MMP3-KO were markedly rescued by the addition of MMP3-rich EVs or conditioned medium (CM) collected from LuM1-tumoroids, which caused a dramatic rise in the expression of MMP3, CD9, and Ki-67 (a marker of proliferating cells) in the MMP3-null/CD9-low tumoroids. Notably, MMP3 enriched in tumoroids-derived EVs and CM deeply penetrated recipient MMP3-KO tumoroids, resulting in a remarkable enlargement of solid tumoroids, while MMP3-null EVs did not. These data demonstrate that EVs can mediate molecular transfer of MMP3, resulting in increasing the proliferation and tumorigenesis, indicating crucial roles of MMP3 in tumor progression. en-copyright= kn-copyright= en-aut-name=TahaEman A. en-aut-sei=Taha en-aut-mei=Eman A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SogawaChiharu en-aut-sei=Sogawa en-aut-mei=Chiharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OkushaYuka en-aut-sei=Okusha en-aut-mei=Yuka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KawaiHotaka en-aut-sei=Kawai en-aut-mei=Hotaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OoMay Wathone en-aut-sei=Oo en-aut-mei=May Wathone kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ElseoudiAbdellatif en-aut-sei=Elseoudi en-aut-mei=Abdellatif kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=LuYanyin en-aut-sei=Lu en-aut-mei=Yanyin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NagatsukaHitoshi en-aut-sei=Nagatsuka en-aut-mei=Hitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KubotaSatoshi en-aut-sei=Kubota en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=SatohAyano en-aut-sei=Satoh en-aut-mei=Ayano kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=OkamotoKuniaki en-aut-sei=Okamoto en-aut-mei=Kuniaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=EguchiTakanori en-aut-sei=Eguchi en-aut-mei=Takanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Department of Dental Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Dental Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Dental Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Dental Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Medical Bioengineering, Okayama University Graduate School of Natural Science and Technology kn-affil= affil-num=11 en-affil=Department of Dental Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Department of Dental Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=matrix metalloproteinase 3 (MMP3) kn-keyword=matrix metalloproteinase 3 (MMP3) en-keyword=extracellular vesicles (EVs) kn-keyword=extracellular vesicles (EVs) en-keyword=tumoroid kn-keyword=tumoroid en-keyword=tumor organoid kn-keyword=tumor organoid en-keyword=tumorigenesis kn-keyword=tumorigenesis en-keyword=three-dimensional (3D) culture system kn-keyword=three-dimensional (3D) culture system END