start-ver=1.4 cd-journal=joma no-vol=247 cd-vols= no-issue= article-no= start-page=125933 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200116 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Application of the cellular oxidation biosensor to Toxicity Identification Evaluations for high-throughput toxicity assessment of river water en-subtitle= kn-subtitle= en-abstract= kn-abstract=Toxicity Identification Evaluation (TIE) is a useful method for the classification and identification of toxicants in a composite environment water sample. However, its extension to a larger sample size has been restrained owing to the limited throughput of toxicity bioassays. Here we reported the development of a high-throughput method of TIE Phase I. This newly developed method was assisted by the fluorescence-based cellular oxidation (CO) biosensor fabricated with roGFP2-expressing bacterial cells in 96-well microplate format. The assessment of four river water samples from Langat river basin by this new method demonstrated that the contaminant composition of the four samples can be classified into two distinct groups. The entire toxicity assay consisted of 2338 tests was completed within 12 h with a fluorescence microplate reader. Concurrently, the sample volume for each assay was reduced to 50 μL, which is 600 to 4700 times lesser to compare with conventional bioassays. These imply that the throughput of the CO biosensor-assisted TIE Phase I is now feasible for constructing a large-scale toxicity monitoring system, which would cover a whole watershed scale. en-copyright= kn-copyright= en-aut-name=OoiLia en-aut-sei=Ooi en-aut-mei=Lia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OkazakiKeisuke en-aut-sei=Okazaki en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=Arias-BarreiroCarlos R. en-aut-sei=Arias-Barreiro en-aut-mei=Carlos R. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HengLee Yook en-aut-sei=Heng en-aut-mei=Lee Yook kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MoriIzumi C. en-aut-sei=Mori en-aut-mei=Izumi C. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil= Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=3 en-affil=nstitute of Plant Science and Resources, Okayama University kn-affil= affil-num=4 en-affil=Southeast Asia Disaster Prevention Research Initiative (SEADPRI-UKM), Institute for Environment and Development (LESTARI), The National University of Malaysia kn-affil= affil-num=5 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= en-keyword=High-throughput cytotoxicity biosensor kn-keyword=High-throughput cytotoxicity biosensor en-keyword=Toxicity identification evaluation kn-keyword=Toxicity identification evaluation en-keyword=River water pollution kn-keyword=River water pollution en-keyword=Ecotoxicity management kn-keyword=Ecotoxicity management en-keyword=Integrated watershed management kn-keyword=Integrated watershed management END start-ver=1.4 cd-journal=joma no-vol=42 cd-vols= no-issue=2 article-no= start-page=437 end-page=447 dt-received= dt-revised= dt-accepted= dt-pub-year=2018 dt-pub=20180716 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The mechanism of SO2 -induced stomatal closure differs from O3 and CO2 responses and is mediated by nonapoptotic cell death in guard cells. en-subtitle= kn-subtitle= en-abstract= kn-abstract= Plants closing stomata in the presence of harmful gases is believed to be a stress avoidance mechanism. SO2 , one of the major airborne pollutants, has long been reported to induce stomatal closure, yet the mechanism remains unknown. Little is known about the stomatal response to airborne pollutants besides O3 . SLOW ANION CHANNEL-ASSOCIATED 1 (SLAC1) and OPEN STOMATA 1 (OST1) were identified as genes mediating O3 -induced closure. SLAC1 and OST1 are also known to mediate stomatal closure in response to CO2 , together with RESPIRATORY BURST OXIDASE HOMOLOGs (RBOHs). The overlaying roles of these genes in response to O3 and CO2 suggested that plants share their molecular regulators for airborne stimuli. Here, we investigated and compared stomatal closure event induced by a wide concentration range of SO2 in Arabidopsis through molecular genetic approaches. O3 - and CO2 -insensitive stomata mutants did not show significant differences from the wild type in stomatal sensitivity, guard cell viability, and chlorophyll content revealing that SO2 -induced closure is not regulated by the same molecular mechanisms as for O3 and CO2 . Nonapoptotic cell death is shown as the reason for SO2 -induced closure, which proposed the closure as a physicochemical process resulted from SO2 distress, instead of a biological protection mechanism. en-copyright= kn-copyright= en-aut-name=Ooi Lia en-aut-sei=Ooi en-aut-mei=Lia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatsuuraTakakazu en-aut-sei=Matsuura en-aut-mei=Takakazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MunemasaShintaro en-aut-sei=Munemasa en-aut-mei=Shintaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MurataYoshiyuki en-aut-sei=Murata en-aut-mei=Yoshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KatsuharaMaki en-aut-sei=Katsuhara en-aut-mei=Maki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HirayamaTakashi en-aut-sei=Hirayama en-aut-mei=Takashi kn-aut-name=平山隆志 kn-aut-sei=平山 kn-aut-mei=隆志 aut-affil-num=6 ORCID= en-aut-name=MoriIzumi C. en-aut-sei=Mori en-aut-mei=Izumi C. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil= Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil= Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=5 en-affil= Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=6 en-affil= Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=7 en-affil= Institute of Plant Science and Resources, Okayama University kn-affil= en-keyword=airborne pollutants kn-keyword=airborne pollutants en-keyword=nonapoptotic cell death kn-keyword=nonapoptotic cell death en-keyword=stomatal closure kn-keyword=stomatal closure en-keyword=sulfur dioxide kn-keyword=sulfur dioxide END