start-ver=1.4 cd-journal=joma no-vol=44 cd-vols= no-issue=8-9 article-no= start-page=695 end-page=707 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230817 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Dual roles of cellular communication network factor 6 (CCN6) in the invasion and metastasis of oral cancer cells to bone via binding to BMP2 and RANKL en-subtitle= kn-subtitle= en-abstract= kn-abstract=The acquisition of motility via epithelial?mesenchymal transition (EMT) and osteoclast induction are essential for the invasion and metastasis of oral squamous cell carcinoma (OSCC) to bone. However, the molecule suppressing both EMT and osteoclastogenesis is still unknown. In this study, we found that cellular communication network factor 6 (CCN6) was less produced in a human OSCC cell line, HSC-3 with mesenchymal phenotype, than in HSC-2 cells without it. Notably, CCN6 interacted with bone morphogenetic protein 2 (BMP2) and suppressed the cell migration of HSC-3 cells stimulated by BMP2. Moreover, knockdown of CCN6 in HSC-2 cells led to the promotion of EMT and enhanced the effect of transforming growth factor-ƒΐ (TGF-ƒΐ) on the promotion of EMT. Furthermore, CCN6 combined with BMP2 suppressed EMT. These results suggest that CCN6 strongly suppresses EMT in cooperation with BMP2 and TGF-ƒΐ. Interestingly, CCN6 combined with BMP2 increased the gene expression of receptor activator of nuclear factor-ƒΘB ligand (RANKL) in HSC-2 and HSC-3 cells. Additionally, CCN6 interacted with RANKL, and CCN6 combined with RANKL suppressed RANKL-induced osteoclast formation. In metastatic lesions, increasing BMP2 due to the bone destruction led to interference with binding of CCN6 to RANKL, which results in the promotion of bone metastasis of OSCC cells due to continuous osteoclastogenesis. These findings suggest that CCN6 plays dual roles in the suppression of EMT and in the promotion of bone destruction of OSCC in primary and metastatic lesions, respectively, through cooperation with BMP2 and interference with RANKL. en-copyright= kn-copyright= en-aut-name=HochiHiroaki en-aut-sei=Hochi en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KubotaSatoshi en-aut-sei=Kubota en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TakigawaMasaharu en-aut-sei=Takigawa en-aut-mei=Masaharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NishidaTakashi en-aut-sei=Nishida en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Faculty of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= END start-ver=1.4 cd-journal=joma no-vol=17 cd-vols= no-issue=4 article-no= start-page=1501 end-page=1515 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230911 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Expression and function of CCN2-derived circRNAs in chondrocytes en-subtitle= kn-subtitle= en-abstract= kn-abstract=Cellular communication network factor 2 (CCN2) molecules promote endochondral ossification and articular cartilage regeneration, and circular RNAs (circRNAs), which arise from various genes and regulate gene expression by adsorbing miRNAs, are known to be synthesized from CCN2 in human vascular endothelial cells and other types of cells. However, in chondrocytes, not only the function but also the presence of CCN2-derived circRNA remains completely unknown. In the present study, we investigated the expression and function of CCN2-derived circRNAs in chondrocytes. Amplicons smaller than those from known CCN2-derived circRNAs were observed using RT-PCR analysis that could specifically amplify CCN2-derived circRNAs in human chondrocytic HCS-2/8 cells. The nucleotide sequences of the PCR products indicated novel circRNAs in the HCS-2/8 cells that were different from known CCN2-derived circRNAs. Moreover, the expression of several Ccn2-derived circRNAs in murine chondroblastic ATDC5 cells was confirmed and observed to change alongside chondrocytic differentiation. Next, one of these circRNAs was knocked down in HCS-2/8 cells to investigate the function of the human CCN2-derived circRNA. As a result, CCN2-derived circRNA knockdown significantly reduced the expression of aggrecan mRNA and proteoglycan synthesis. Our data suggest that CCN2-derived circRNAs are expressed in chondrocytes and play a role in chondrogenic differentiation. en-copyright= kn-copyright= en-aut-name=KatoSoma en-aut-sei=Kato en-aut-mei=Soma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KawataKazumi en-aut-sei=Kawata en-aut-mei=Kazumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NishidaTakashi en-aut-sei=Nishida en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MizukawaTomomi en-aut-sei=Mizukawa en-aut-mei=Tomomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakigawaMasaharu en-aut-sei=Takigawa en-aut-mei=Masaharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=IidaSeiji en-aut-sei=Iida en-aut-mei=Seiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KubotaSatoshi en-aut-sei=Kubota en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Oral Maxillofacial Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Chondrocyte kn-keyword=Chondrocyte en-keyword=CCN2 kn-keyword=CCN2 en-keyword=Circular RNA kn-keyword=Circular RNA en-keyword=ACAN kn-keyword=ACAN en-keyword=Chondrocytic differentiation kn-keyword=Chondrocytic differentiation END start-ver=1.4 cd-journal=joma no-vol=17 cd-vols= no-issue=2 article-no= start-page=353 end-page=359 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230206 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Do not overwork: cellular communication network factor 3 for life in cartilage en-subtitle= kn-subtitle= en-abstract= kn-abstract=Cellular communication network factor (CCN) 3, which is one of the founding members of the CCN family, displays diverse functions. However, this protein generally represses the proliferation of a variety of cells. Along with skeletal development, CCN3 is produced in cartilaginous anlagen, growth plate cartilage and epiphysial cartilage. Interestingly, CCN3 is drastically induced in the growth plates of mice lacking CCN2, which promotes endochondral ossification. Notably, chondrocytes in these mutant mice with elevated CCN3 production also suffer from impaired glycolysis and energy metabolism, suggesting a critical role of CCN3 in cartilage metabolism. Recently, CCN3 was found to be strongly induced by impaired glycolysis, and in our study, we located an enhancer that mediated CCN3 regulation via starvation. Subsequent investigations specified regulatory factor binding to the X-box 1 (RFX1) as a transcription factor mediating this CCN3 regulation. Impaired glycolysis is a serious problem, resulting in an energy shortage in cartilage without vasculature. CCN3 produced under such starved conditions restricts energy consumption by repressing cell proliferation, leading chondrocytes to quiescence and survival. This CCN3 regulatory system is indicated to play an important role in articular cartilage maintenance, as well as in skeletal development. Furthermore, CCN3 continues to regulate cartilage metabolism even during the aging process, probably utilizing this regulatory system. Altogether, CCN3 seems to prevent "overwork" by chondrocytes to ensure their sustainable life in cartilage by sensing energy metabolism. Similar roles are suspected to exist in relation to systemic metabolism, since CCN3 is found in the bloodstream. en-copyright= kn-copyright= en-aut-name=KubotaSatoshi en-aut-sei=Kubota en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KawakiHarumi en-aut-sei=Kawaki en-aut-mei=Harumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=PerbalBernard en-aut-sei=Perbal en-aut-mei=Bernard kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TakigawaMasaharu en-aut-sei=Takigawa en-aut-mei=Masaharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KawataKazumi en-aut-sei=Kawata en-aut-mei=Kazumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HattoriTakako en-aut-sei=Hattori en-aut-mei=Takako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NishidaTakashi en-aut-sei=Nishida en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Oral Biochemistry, Asahi University School of Dentistry kn-affil= affil-num=3 en-affil=International CCN Society kn-affil= affil-num=4 en-affil=Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences/Dental School kn-affil= affil-num=5 en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=CCN family kn-keyword=CCN family en-keyword=CCN3 kn-keyword=CCN3 en-keyword=cartilage kn-keyword=cartilage en-keyword=chondrocytes kn-keyword=chondrocytes en-keyword=energy metabolism kn-keyword=energy metabolism END start-ver=1.4 cd-journal=joma no-vol=23 cd-vols= no-issue=15 article-no= start-page=8592 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220802 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Fibroblast Growth Factors and Cellular Communication Network Factors: Intimate Interplay by the Founding Members in Cartilage en-subtitle= kn-subtitle= en-abstract= kn-abstract=Fibroblast growth factors (FGFs) constitute a large family of signaling molecules that act in an autocrine/paracrine, endocrine, or intracrine manner, whereas the cellular communication network factors (CCN) family is composed of six members that manipulate extracellular signaling networks. FGFs and CCNs are structurally and functionally distinct, except for the common characteristics as matricellular proteins. Both play significant roles in the development of a variety of tissues and organs, including the skeletal system. In vertebrates, most of the skeletal parts are formed and grow through a process designated endochondral ossification, in which chondrocytes play the central role. The growth plate cartilage is the place where endochondral ossification occurs, and articular cartilage is left to support the locomotive function of joints. Several FGFs, including FGF-2, one of the founding members of this family, and all of the CCNs represented by CCN2, which is required for proper skeletal development, can be found therein. Research over a decade has revealed direct binding of CCN2 to FGFs and FGF receptors (FGFRs), which occasionally affect the biological outcome via FGF signaling. Moreover, a recent study uncovered an integrated regulation of FGF and CCN genes by FGF signaling. In this review, after a brief introduction of these two families, molecular and genetic interactions between CCN and FGF family members in cartilage, and their biological effects, are summarized. The molecular interplay represents the mutual involvement of the other in their molecular functions, leading to collaboration between CCN2 and FGFs during skeletal development. en-copyright= kn-copyright= en-aut-name=KubotaSatoshi en-aut-sei=Kubota en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AoyamaEriko en-aut-sei=Aoyama en-aut-mei=Eriko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TakigawaMasaharu en-aut-sei=Takigawa en-aut-mei=Masaharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NishidaTakashi en-aut-sei=Nishida en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Biochemistry and Molecular Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Advanced Research Center for Oral and Craniofacial Sciences, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Advanced Research Center for Oral and Craniofacial Sciences, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Biochemistry and Molecular Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=fibroblast growth factor kn-keyword=fibroblast growth factor en-keyword=cellular communication network factor kn-keyword=cellular communication network factor en-keyword=cartilage kn-keyword=cartilage en-keyword=skeletal development kn-keyword=skeletal development en-keyword=CCN2 kn-keyword=CCN2 END start-ver=1.4 cd-journal=joma no-vol=23 cd-vols= no-issue=11 article-no= start-page=5887 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220524 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Molecular and Genetic Interactions between CCN2 and CCN3 behind Their Yin-Yang Collaboration en-subtitle= kn-subtitle= en-abstract= kn-abstract=Cellular communication network factor (CCN) 2 and 3 are the members of the CCN family that conduct the harmonized development of a variety of tissues and organs under interaction with multiple biomolecules in the microenvironment. Despite their striking structural similarities, these two members show contrastive molecular functions as well as temporospatial emergence in living tissues. Typically, CCN2 promotes cell growth, whereas CCN3 restrains it. Where CCN2 is produced, CCN3 disappears. Nevertheless, these two proteins collaborate together to execute their mission in a yin-yang fashion. The apparent functional counteractions of CCN2 and CCN3 can be ascribed to their direct molecular interaction and interference over the cofactors that are shared by the two. Recent studies have revealed the mutual negative regulation systems between CCN2 and CCN3. Moreover, the simultaneous and bidirectional regulatory system of CCN2 and CCN3 is also being clarified. It is of particular note that these regulations were found to be closely associated with glycolysis, a fundamental procedure of energy metabolism. Here, the molecular interplay and metabolic gene regulation that enable the yin-yang collaboration of CCN2 and CCN3 typically found in cartilage development/regeneration and fibrosis are described. en-copyright= kn-copyright= en-aut-name=KubotaSatoshi en-aut-sei=Kubota en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KawataKazumi en-aut-sei=Kawata en-aut-mei=Kazumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HattoriTakako en-aut-sei=Hattori en-aut-mei=Takako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NishidaTakashi en-aut-sei=Nishida en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Biochemistry and Molecular Dentistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Biochemistry and Molecular Dentistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Biochemistry and Molecular Dentistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=cellular communication network factor kn-keyword=cellular communication network factor en-keyword=CCN2 kn-keyword=CCN2 en-keyword=CCN3 kn-keyword=CCN3 en-keyword=cartilage kn-keyword=cartilage en-keyword=fibrosis kn-keyword=fibrosis en-keyword=glycolysis kn-keyword=glycolysis END start-ver=1.4 cd-journal=joma no-vol=22 cd-vols= no-issue=17 article-no= start-page=9204 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210825 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effect of Angiotensin II on Chondrocyte Degeneration and Protection via Differential Usage of Angiotensin II Receptors en-subtitle= kn-subtitle= en-abstract= kn-abstract=The renin-angiotensin system (RAS) controls not only systemic functions, such as blood pressure, but also local tissue-specific events. Previous studies have shown that angiotensin II receptor type 1 (AT(1)R) and type 2 (AT(2)R), two RAS components, are expressed in chondrocytes. However, the angiotensin II (ANG II) effects exerted through these receptors on chondrocyte metabolism are not fully understood. In this study, we investigated the effects of ANG II and AT(1)R blockade on chondrocyte proliferation and differentiation. Firstly, we observed that ANG II significantly suppressed cell proliferation and glycosaminoglycan content in rat chondrocytic RCS cells. Additionally, ANG II decreased CCN2, which is an anabolic factor for chondrocytes, via increased MMP9. In Agtr1a-deficient RCS cells generated by the CRISPR-Cas9 system, Ccn2 and Aggrecan (Acan) expression increased. Losartan, an AT(1)R antagonist, blocked the ANG II-induced decrease in CCN2 production and Acan expression in RCS cells. These findings suggest that AT(1)R blockade reduces ANG II-induced chondrocyte degeneration. Interestingly, AT(1)R-positive cells, which were localized on the surface of the articular cartilage of 7-month-old mice expanded throughout the articular cartilage with aging. These findings suggest that ANG II regulates age-related cartilage degeneration through the ANG II-AT(1)R axis. en-copyright= kn-copyright= en-aut-name=NishidaTakashi en-aut-sei=Nishida en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AkashiSho en-aut-sei=Akashi en-aut-mei=Sho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TakigawaMasaharu en-aut-sei=Takigawa en-aut-mei=Masaharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KubotaSatoshi en-aut-sei=Kubota en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil=‰ͺŽR‘εŠw‘εŠw‰@ˆγŽ•–ςŠw‘‡Œ€‹†‰Θ en-keyword=angiotensin II kn-keyword=angiotensin II en-keyword=cellular communication network factor 2 (CCN2) kn-keyword=cellular communication network factor 2 (CCN2) en-keyword=renin-angiotensin system (RAS) kn-keyword=renin-angiotensin system (RAS) en-keyword=losartan kn-keyword=losartan en-keyword=angiotensin II type I receptor (AT(1)R) kn-keyword=angiotensin II type I receptor (AT(1)R) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210303 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=RFX1]mediated CCN3 induction that may support chondrocyte survival under starved conditions en-subtitle= kn-subtitle= en-abstract= kn-abstract=Cellular communication network factor (CCN) family members are multifunctional matricellular proteins that manipulate and integrate extracellular signals. In our previous studies investigating the role of CCN family members in cellular metabolism, we found three members that might be under the regulation of energy metabolism. In this study, we confirmed that CCN2 and CCN3 are the only members that are tightly regulated by glycolysis in human chondrocytic cells. Interestingly, CCN3 was induced under a variety of impaired glycolytic conditions. This CCN3 induction was also observed in two breast cancer cell lines with a distinct phenotype, suggesting a basic role of CCN3 in cellular metabolism. Reporter gene assays indicated a transcriptional regulation mediated by an enhancer in the proximal promoter region. As a result of analyses in silico, we specified regulatory factor binding to the X]box 1 (RFX1) as a candidate that mediated the transcriptional activation by impaired glycolysis. Indeed, the inhibition of glycolysis induced the expression of RFX1, and RFX1 silencing nullified the CCN3 induction by impaired glycolysis. Subsequent experiments with an anti]CCN3 antibody indicated that CCN3 supported the survival of chondrocytes under impaired glycolysis. Consistent with these findings in vitro, abundant CCN3 production by chondrocytes in the deep zones of developing epiphysial cartilage, which are located far away from the synovial fluid, was confirmed in vivo. Our present study uncovered that RFX1 is the mediator that enables CCN3 induction upon cellular starvation, which may eventually assist chondrocytes in retaining their viability, even when there is an energy supply shortage. en-copyright= kn-copyright= en-aut-name=MizukawaTomomi en-aut-sei=Mizukawa en-aut-mei=Tomomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NishidaTakashi en-aut-sei=Nishida en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AkashiSho en-aut-sei=Akashi en-aut-mei=Sho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KawataKazumi en-aut-sei=Kawata en-aut-mei=Kazumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KikuchiSumire en-aut-sei=Kikuchi en-aut-mei=Sumire kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KawakiHarumi en-aut-sei=Kawaki en-aut-mei=Harumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TakigawaMasaharu en-aut-sei=Takigawa en-aut-mei=Masaharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KamiokaHiroshi en-aut-sei=Kamioka en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KubotaSatoshi en-aut-sei=Kubota en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences Okayama Japan kn-affil= affil-num=4 en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences Okayama Japan kn-affil= affil-num=5 en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences Okayama Japan kn-affil= affil-num=6 en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences Okayama Japan kn-affil= affil-num=7 en-affil=Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School kn-affil= affil-num=8 en-affil=Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=1 article-no= start-page=81 end-page=91 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=202114 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Bipartite regulation of cellular communication network factor 2 and fibroblast growth factor 1 genes by fibroblast growth factor 1 through histone deacetylase 1 and fork head box protein A1 en-subtitle= kn-subtitle= en-abstract= kn-abstract= Fibroblast growth factor 1 (FGF-1) is the first FGF family member, and it induces proliferation of fibroblasts and other types of the cells. However, recent studies are uncovering unexpected functions of this molecule. Our previous study redefined this growth factor as a catabolic molecule produced in cartilage upon metabolic insult. Indeed, FGF-1 was found to repress the gene expression of cellular communication network factor 2 (CCN2), which protects and regenerates cartilage, amplifying its own production through positive feedback regulation. In the present study, we investigated the molecular mechanism of this bipartite CCN2 repression and FGF1 activation by FGF-1 in chondrocytes. Repression of CCN2 and induction of FGF1 in human chondrocytic cells were both partly abolished by valproic acid, an inhibitor of histone deacetylase 1 (HDAC1), indicating the involvement of chromatin remodeling by histone acetylation in this system. In contrast, RNA degradation analysis suggested no contribution of post-transcriptional regulation of the mRNA stability to the effects conferred by FGF-1. Suspecting a regulation by a specific transcription factor, we next sought a candidate in silico from a large dataset. As a result, we found fork head box protein A1 (FOXA1) as the transcription factor that bound to both CCN2 and FGF1 loci. Functional analysis demonstrated that FOXA1 silencing significantly attenuated the CCN2 repression and FGF1 induction caused by FGF1. These findings collectively indicate that the bipartite regulation by FGF-1 is enabled by the combination of chromatin remodeling by HDACs and transcriptional modulation by FOXA1 with unknown transcriptional coactivators of opposite functionalities. en-copyright= kn-copyright= en-aut-name=ElseoudiAbdellatif en-aut-sei=Elseoudi en-aut-mei=Abdellatif kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NishidaTakashi en-aut-sei=Nishida en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MizukawaTomomi en-aut-sei=Mizukawa en-aut-mei=Tomomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HattoriTakako en-aut-sei=Hattori en-aut-mei=Takako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KawataKazumi en-aut-sei=Kawata en-aut-mei=Kazumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TahaEman A. en-aut-sei=Taha en-aut-mei=Eman A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TakigawaMasaharu en-aut-sei=Takigawa en-aut-mei=Masaharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KubotaSatoshi en-aut-sei=Kubota en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Biochemistry and Molecular Dentistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Biochemistry and Molecular Dentistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Biochemistry and Molecular Dentistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Biochemistry and Molecular Dentistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Biochemistry and Molecular Dentistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Advanced Research Center for Oral and Craniofacial Sciences, Dental School, Okayama University kn-affil= affil-num=8 en-affil=Department of Biochemistry and Molecular Dentistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=FGF-1 kn-keyword=FGF-1 en-keyword=CCN2 kn-keyword=CCN2 en-keyword=Osteoarthritis kn-keyword=Osteoarthritis en-keyword=Chondrocytes kn-keyword=Chondrocytes en-keyword=Cartilage kn-keyword=Cartilage END start-ver=1.4 cd-journal=joma no-vol=56 cd-vols= no-issue=1 article-no= start-page=119 end-page=126 dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20201009 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Roles of CCN2 as a mechano-sensing regulator of chondrocyte differentiation en-subtitle= kn-subtitle= en-abstract= kn-abstract=Cellular communication network factor 2 (CCN2) is a cysteine-rich secreted matricellular protein that regulates various cellular functions including cell differentiation. CCN2 is highly expressed under several types of mechanical stress, such as stretch, compression, and shear stress, in mesenchymal cells including chondrocytes, osteoblasts, and fibroblasts. In particular, CCN2 not only promotes cell proliferation and differentiation of various cells but also regulates the stability of mRNA of TRPV4, a mechanosensitive ion channel in chondrocytes. Of note, CCN2 behaves like a biomarker to sense suitable mechanical stress, because CCN2 expression is down-regulated when chondrocytes are subjected to excessive mechanical stress. These findings suggest that CCN2 is a mechano-sensing regulator. CCN2 expression is regulated by the activation of various mechano-sensing signaling pathways, e.g., mechanosensitive ion channels, integrin-focal adhesion-actin dynamics, Rho GTPase family members, Hippo-YAP signaling, and G protein-coupled receptors. This review summarizes the characterization of mechanoreceptors involved in CCN2 gene regulation and discusses the role of CCN2 as a mechano-sensing regulator of mesenchymal cell differentiation, with particular focus on chondrocytes. en-copyright= kn-copyright= en-aut-name=NishidaTakashi en-aut-sei=Nishida en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KubotaSatoshi en-aut-sei=Kubota en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= en-keyword=Mechanoreceptors kn-keyword=Mechanoreceptors en-keyword=Cellular communication network factor 2 (CCN2) kn-keyword=Cellular communication network factor 2 (CCN2) en-keyword=Mechanical stress kn-keyword=Mechanical stress en-keyword=Chondrocytes kn-keyword=Chondrocytes END start-ver=1.4 cd-journal=joma no-vol=56 cd-vols= no-issue=1 article-no= start-page=119 end-page=126 dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=202011 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Roles of CCN2 as a mechano-sensing regulator of chondrocyte differentiation en-subtitle= kn-subtitle= en-abstract= kn-abstract=Cellular communication network factor 2 (CCN2) is a cysteine-rich secreted matricellular protein that regulates various cellular functions including cell differentiation. CCN2 is highly expressed under several types of mechanical stress, such as stretch, compression, and shear stress, in mesenchymal cells including chondrocytes, osteoblasts, and fibroblasts. In particular, CCN2 not only promotes cell proliferation and differentiation of various cells but also regulates the stability of mRNA of TRPV4, a mechanosensitive ion channel in chondrocytes. Of note, CCN2 behaves like a biomarker to sense suitable mechanical stress, because CCN2 expression is down-regulated when chondrocytes are subjected to excessive mechanical stress. These findings suggest that CCN2 is a mechano-sensing regulator. CCN2 expression is regulated by the activation of various mechano-sensing signaling pathways, e.g., mechanosensitive ion channels, integrin-focal adhesion-actin dynamics, Rho GTPase family members, Hippo-YAP signaling, and G protein-coupled receptors. This review summarizes the characterization of mechanoreceptors involved in CCN2 gene regulation and discusses the role of CCN2 as a mechano-sensing regulator of mesenchymal cell differentiation, with particular focus on chondrocytes. en-copyright= kn-copyright= en-aut-name=NishidaTakashi en-aut-sei=Nishida en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KubotaSatoshi en-aut-sei=Kubota en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= en-keyword=Mechanoreceptors kn-keyword=Mechanoreceptors en-keyword=Cellular communication network factor 2 (CCN2) kn-keyword=Cellular communication network factor 2 (CCN2) en-keyword=Mechanical stress kn-keyword=Mechanical stress en-keyword=Chondrocytes kn-keyword=Chondrocytes END start-ver=1.4 cd-journal=joma no-vol=62 cd-vols= no-issue=3 article-no= start-page=280 end-page=288 dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200811 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Regulation of cellular communication network factor 2 (CCN2) in breast cancer cells via the cell-type dependent interplay between CCN2 and glycolysis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Objectives: Anti-osteoclastic treatments for breast cancer occasionally cause medication-related osteonecrosis of the jaw. Moreover, elevated glycolytic activity, which is known as the Warburg effect, is usually observed in these breast cancer cells. Previously, we found that cellular communication network factor 2 (CCN2) production and glycolysis enhanced each other in chondrocytes. Here, we evaluated the interplay between CCN2 and glycolysis in breast cancer cells, as we suspected a possible involvement of CCN2 in the Warburg effect in highly invasive breast cancer cells.
Methods: Two human breast cancer cell lines with a distinct phenotype were used. Glycolysis was inhibited by using 2 distinct compounds, and gene silencing was performed using siRNA. Glycolysis and the expression of relevant genes were monitored via colorimetric assays and quantitative RT-PCR, respectively.
Results: Although CCN2 expression was almost completely silenced when treating invasive breast cancer cells with a siRNA cocktail against CCN2, glycolytic activity was not affected. Notably, the expression of glycolytic enzyme genes, which was repressed by CCN2 deficiency in chondrocytes, tended to increase upon CCN2 silencing in breast cancer cells. Inhibition of glycolysis, which resulted in the repression of CCN2 expression in chondrocytic cells, did not alter or strongly enhanced CCN2 expression in the invasive and non-invasive breast cancer cells, respectively.
Conclusions: High CCN2 expression levels play a critical role in the invasion and metastasis of breast cancer. Thus, a collapse in the intrinsic repressive machinery of CCN2 due to glycolysis may induce the acquisition of an invasive phenotype in breast cancer cells. en-copyright= kn-copyright= en-aut-name=AkashiSho en-aut-sei=Akashi en-aut-mei=Sho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NishidaTakashi en-aut-sei=Nishida en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MizukawaTomomi en-aut-sei=Mizukawa en-aut-mei=Tomomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KawataKazumi en-aut-sei=Kawata en-aut-mei=Kazumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakigawaMasaharu en-aut-sei=Takigawa en-aut-mei=Masaharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=IidaSeiji en-aut-sei=Iida en-aut-mei=Seiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KubotaSatoshi en-aut-sei=Kubota en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil= Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil= Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Bone metastasis kn-keyword=Bone metastasis en-keyword=Breast cancer kn-keyword=Breast cancer en-keyword=CCN2 kn-keyword=CCN2 en-keyword=Glycolysis kn-keyword=Glycolysis en-keyword=Warburg effect kn-keyword=Warburg effect END start-ver=1.4 cd-journal=joma no-vol=21 cd-vols= no-issue=8 article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200416 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Roles of Interaction between CCN2 and Rab14 in Aggrecan Production by Chondrocytes en-subtitle= kn-subtitle= en-abstract= kn-abstract=To identify proteins that cooperate with cellular communication network factor 2 (CCN2), we carried out GAL4-based yeast two-hybrid screening using a cDNA library derived from the chondrocytic cell line HCS-2/8. Rab14 GTPase (Rab14) polypeptide was selected as a CCN2-interactive protein. The interaction between CCN2 and Rab14 in HCS-2/8 cells was confirmed using the in situ proximity ligation assay. We also found that CCN2 interacted with Rab14 through its IGFBP-like domain among the four domains in CCN2 protein. To detect the colocalization between CCN2 and Rab14 in the cells in detail, CCN2, wild-type Rab14 (Rab14WT), a constitutive active form (Rab14CA), and a dominant negative form (Rab14DN) of Rab14 were overexpressed in monkey kidney-tissue derived COS7 cells. Ectopically overexpressed Rab14 showed a diffuse cytosolic distribution in COS7 cells; however, when Rab14WT was overexpressed with CCN2, the Rab14WT distribution changed to dots that were evenly distributed within the cytosol, and both Rab14 and CCN2 showed clear colocalization. When Rab14CA was overexpressed with CCN2, Rab14CA and CCN2 also showed good localization as dots, but their distribution was more widespread within cytosol. The coexpression of Rab14DN and CCN2 also showed a dotted codistribution but was more concentrated in the perinuclear area. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis revealed that the reduction in RAB14 or CCN2 mRNA by their respective siRNA significantly enhanced the expression of ER stress markers, BIP and CHOP mRNA in HCS-2/8 chondrocytic cells, suggesting that ER and Golgi stress were induced by the inhibition of membrane vesicle transfer via the suppression of CCN2 or Rab14. Moreover, to study the effect of the interaction between CCN2 and its interactive protein Rab14 on proteoglycan synthesis, we overexpressed Rab14WT or Rab14CA or Rab14DN in HCS-2/8 cells and found that the overexpression of Rab14DN decreased the extracellular proteoglycan accumulation more than the overexpression of Rab14WT/CA did in the chondrocytic cells. These results suggest that intracellular CCN2 is associated with Rab14 on proteoglycan-containing vesicles during their transport from the Golgi apparatus to endosomes in chondrocytes and that this association may play a role in proteoglycan secretion by chondrocytes. en-copyright= kn-copyright= en-aut-name=HoshijimaMitsuhiro en-aut-sei=Hoshijima en-aut-mei=Mitsuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HattoriTakako en-aut-sei=Hattori en-aut-mei=Takako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AoyamaEriko en-aut-sei=Aoyama en-aut-mei=Eriko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NishidaTakashi en-aut-sei=Nishida en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KubotaSatoshi en-aut-sei=Kubota en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KamiokaHiroshi en-aut-sei=Kamioka en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TakigawaMasaharu en-aut-sei=Takigawa en-aut-mei=Masaharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School/Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School/Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=cellular communication network factor 2 kn-keyword=cellular communication network factor 2 en-keyword=CCN2 kn-keyword=CCN2 en-keyword=CTGF kn-keyword=CTGF en-keyword=Rab14 kn-keyword=Rab14 en-keyword=yeast two-hybrid kn-keyword=yeast two-hybrid en-keyword=chondrocyte kn-keyword=chondrocyte en-keyword=ER stress kn-keyword=ER stress en-keyword=aggrecan kn-keyword=aggrecan END start-ver=1.4 cd-journal=joma no-vol=21 cd-vols= no-issue=5 article-no= start-page=1564 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200225 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Retrotransposons Manipulating Mammalian Skeletal Development in Chondrocytes en-subtitle= kn-subtitle= en-abstract= kn-abstract=Retrotransposons are genetic elements that copy and paste themselves in the host genome through transcription, reverse-transcription, and integration processes. Along with their proliferation in the genome, retrotransposons inevitably modify host genes around the integration sites, and occasionally create novel genes. Even now, a number of retrotransposons are still actively editing our genomes. As such, their profound role in the evolution of mammalian genomes is obvious; thus, their contribution to mammalian skeletal evolution and development is also unquestionable. In mammals, most of the skeletal parts are formed and grown through a process entitled endochondral ossification, in which chondrocytes play central roles. In this review, current knowledge on the evolutional, physiological, and pathological roles of retrotransposons in mammalian chondrocyte differentiation and cartilage development is summarized. The possible biological impact of these mobile genetic elements in the future is also discussed. en-copyright= kn-copyright= en-aut-name=KubotaSatoshi en-aut-sei=Kubota en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IshikawaTakanori en-aut-sei=Ishikawa en-aut-mei=Takanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KawataKazumi en-aut-sei=Kawata en-aut-mei=Kazumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HattoriTakako en-aut-sei=Hattori en-aut-mei=Takako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NishidaTakashi en-aut-sei=Nishida en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=retrotransposon kn-keyword=retrotransposon en-keyword=endogenous retrovirus kn-keyword=endogenous retrovirus en-keyword=chondrocyte kn-keyword=chondrocyte en-keyword=cartilage kn-keyword=cartilage en-keyword=skeletal development kn-keyword=skeletal development END start-ver=1.4 cd-journal=joma no-vol=115 cd-vols= no-issue=5 article-no= start-page=854 end-page=865 dt-received= dt-revised= dt-accepted= dt-pub-year=2014 dt-pub=201405 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=CCN2 as a Novel Molecule Supporting Energy Metabolism of Chondrocytes en-subtitle= kn-subtitle= en-abstract= kn-abstract=CCN2/connective tissue growth factor (CTGF) is a unique molecule that promotes both chondrocytic differentiation and proliferation through its matricellular interaction with a number of extracellular biomolecules. This apparently contradictory functional property of CCN2 suggests its certain role in basic cellular activities such as energy metabolism, which is required for both proliferation and differentiation. Comparative metabolomic analysis of costal chondrocytes isolated from wild-type and Ccn2-null mice revealed overall impaired metabolism in the latter. Among the numerous metabolites analyzed, stable reduction in the intracellular level of ATP, GTP, CTP, or UTP was observed, indicating a profound role of CCN2 in energy metabolism. Particularly, the cellular level of ATP was decreased by more than 50% in the Ccn2-null chondrocytes. The addition of recombinant CCN2 (rCCN2) to cultured Ccn2-null chondrocytes partly redeemed the cellular ATP level attenuated by Ccn2 deletion. Next, in order to investigate the mechanistic background that mediates the reduction in ATP level in these Ccn2-null chondrocytes, we performed transcriptome analysis. As a result, several metabolism-associated genes were found to have been up-regulated or down-regulated in the mutant mice. Up-regulation of a number of ribosomal protein genes was observed upon Ccn2 deletion, whereas a few genes required for aerobic and anaerobic ATP production were down-regulated in the Ccn2-null chondrocytes. Among such genes, reduction in the expression of the enolase 1 gene was of particular note. These findings uncover a novel functional role of CCN2 as a metabolic supporter in the growth-plate chondrocytes, which is required for skeletogenesis in mammals. en-copyright= kn-copyright= en-aut-name=Maeda-UematsuAya en-aut-sei=Maeda-Uematsu en-aut-mei=Aya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KubotaSatoshi en-aut-sei=Kubota en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KawakiHarumi en-aut-sei=Kawaki en-aut-mei=Harumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KawataKazumi en-aut-sei=Kawata en-aut-mei=Kazumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MiyakeYoshiaki en-aut-sei=Miyake en-aut-mei=Yoshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HattoriTakako en-aut-sei=Hattori en-aut-mei=Takako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NishidaTakashi en-aut-sei=Nishida en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MoritaniNorifumi en-aut-sei=Moritani en-aut-mei=Norifumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=LyonsKaren M. en-aut-sei=Lyons en-aut-mei=Karen M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=IidaSeiji en-aut-sei=Iida en-aut-mei=Seiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=TakigawaMasaharu en-aut-sei=Takigawa en-aut-mei=Masaharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Biochem & Mol Dent affil-num=2 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Biochem & Mol Dent affil-num=3 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Biochem & Mol Dent affil-num=4 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Biochem & Mol Dent affil-num=5 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Orthopaed Surg affil-num=6 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Biochem & Mol Dent affil-num=7 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Biochem & Mol Dent affil-num=8 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Oral & Maxillofacial Reconstruct Surg affil-num=9 en-affil= kn-affil=Univ Calif Los Angeles, Sch Med, Dept Orthoped Surg affil-num=10 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Oral & Maxillofacial Reconstruct Surg affil-num=11 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Biochem & Mol Dent en-keyword=CCN2 kn-keyword=CCN2 en-keyword=CTGF kn-keyword=CTGF en-keyword=CARTILAGE kn-keyword=CARTILAGE en-keyword=CHONDROCYTES kn-keyword=CHONDROCYTES en-keyword=METABOLISM kn-keyword=METABOLISM END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=6 article-no= start-page=1089 end-page=1098 dt-received= dt-revised= dt-accepted= dt-pub-year=2008 dt-pub=200806 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Promotion of Bone Regeneration by CCN2 Incorporated into Gelatin Hydrogel en-subtitle= kn-subtitle= en-abstract= kn-abstract=CCN family protein 2/connective tissue growth factor (CCN2/CTGF) is a unique molecule that promotes the entire endochondral ossification process and regeneration of damaged articular cartilage. Also, CCN2 has been shown to enhance the adhesion and migration of bone marrow stromal cells as well as the growth and differentiation of osteoblasts; hence, its utility in bone regeneration has been suggested. Here, we evaluated the effect of CCN2 on the regeneration of an intractable bone defect in a rat model. First, we prepared two recombinant CCN2s of different origins, and the one showing the stronger effect on osteoblasts in vitro was selected for further evaluation, based on the result of an in vitro bioassay. Next, to obtain a sustained effect, the recombinant CCN2 was incorporated into gelatin hydrogel that enabled the gradual release of the factor. Evaluation in vivo indicated that CCN2 continued to be released at least for up to 14 days after its incorporation. Application of the gelatin hydrogel-CCN2 complex, together with a collagen scaffold to the bone defect prepared in a rat femur resulted in remarkable induction of osteoblastic mineralization markers within 2 weeks. Finally, distinct enhancement of bone regeneration was observed 3 weeks after the application of the complex. These results confirm the utility of CCN2 in the regeneration of intractable bone defects in vivo when the factor is incorporated into gelatin hydrogel. en-copyright= kn-copyright= en-aut-name=KikuchiTakeshi en-aut-sei=Kikuchi en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KubotaSatoshi en-aut-sei=Kubota en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AsaumiKoji en-aut-sei=Asaumi en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KawakiHarumi en-aut-sei=Kawaki en-aut-mei=Harumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NishidaTakashi en-aut-sei=Nishida en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KawataKazumi en-aut-sei=Kawata en-aut-mei=Kazumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MitaniShigeru en-aut-sei=Mitani en-aut-mei=Shigeru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TabataYasuhiko en-aut-sei=Tabata en-aut-mei=Yasuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=OzakiToshifumi en-aut-sei=Ozaki en-aut-mei=Toshifumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=TakigawaMasaharu en-aut-sei=Takigawa en-aut-mei=Masaharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Biochem & Mol Dent affil-num=2 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Biochem & Mol Dent affil-num=3 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Orthopaed Surg affil-num=4 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Biochem & Mol Dent affil-num=5 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Biochem & Mol Dent affil-num=6 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Biochem & Mol Dent affil-num=7 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Orthopaed Surg affil-num=8 en-affil= kn-affil=Kyoto Univ, Inst Frontier Med Sci, Dept Biomat affil-num=9 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Orthopaed Surg affil-num=10 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Biochem & Mol Dent END start-ver=1.4 cd-journal=joma no-vol=279 cd-vols= no-issue=19 article-no= start-page=3597 end-page=3584 dt-received= dt-revised= dt-accepted= dt-pub-year=2012 dt-pub=201210 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Roles of heterotypic CCN2/CTGF-CCN3/NOV and homotypic CCN2-CCN2 interactions in expression of the differentiated phenotype of chondrocytes en-subtitle= kn-subtitle= en-abstract= kn-abstract=To identify proteins that regulate CCN2 activity, we carried out GAL4-based yeast two-hybrid screening with a cDNA library derived from a chondrocytic cell line, HCS-2/8. CCN2/CTGF and CCN3/NOV polypeptides were picked up as CCN2-binding proteins, and CCN2CCN2 and CCN2CCN3 binding domains were identified. Direct binding between CCN2 and CCN3 was confirmed by coimmunoprecipitation in vitro and in vivo and surface plasmon resonance, and the calculated dissociation constants (Kd) were 1.17 x 10-9 m for CCN2 and CCN2, and 1.95 x 10-9 m for CCN2 and CCN3. Ectopically overexpressed green fluorescent proteinCCN2 and HaloCCN3 in COS7 cells colocalized, as determined by direct fluorescence analysis. We present evidence that CCN2CCN3 interactions modulated CCN2 activity such as enhancement of ACAN and col2a1 expression. Curiously, CCN2 enhanced, whereas CCN3 inhibited, the expression of aggrecan and col2a1 mRNA in HCS-2/8 cells, and combined treatment with CCN2 and CCN3 abolished the inhibitory effect of CCN3. These effects were neutralized with an antibody against the von Willebrand factor type C domain of CCN2 (11H3). This antibody diminished the binding between CCN2 and CCN2, but enhanced that between CCN3 and CCN2. Our results suggest that CCN2 could form homotypic and heterotypic dimers with CCN2 and CCN3, respectively. Strengthening the binding between CCN2 and CCN3 with the 11H3 antibody had an enhancing effect on aggrecan expression in chondrocytes, suggesting that CCN2 had an antagonizing effect by binding to CCN3. en-copyright= kn-copyright= en-aut-name=HoshijimaMitsuhiro en-aut-sei=Hoshijima en-aut-mei=Mitsuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HattoriTakako en-aut-sei=Hattori en-aut-mei=Takako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AoyamaEriko en-aut-sei=Aoyama en-aut-mei=Eriko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NishidaTakashi en-aut-sei=Nishida en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamashiroTakashi en-aut-sei=Yamashiro en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TakigawaMasaharu en-aut-sei=Takigawa en-aut-mei=Masaharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Biochem & Mol Dent affil-num=2 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Biochem & Mol Dent affil-num=3 en-affil= kn-affil=Okayama Univ, Sch Dent, Biodent Res Ctr affil-num=4 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Biochem & Mol Dent affil-num=5 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Orthodont & Dentofacial Orthoped affil-num=6 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Biochem & Mol Dent en-keyword=ACAN kn-keyword=ACAN en-keyword=CCN2 kn-keyword=CCN2 en-keyword=CTGF kn-keyword=CTGF en-keyword=CCN3 kn-keyword=CCN3 en-keyword=NOV kn-keyword=NOV en-keyword=chondrocyte kn-keyword=chondrocyte en-keyword=dimerization kn-keyword=dimerization END start-ver=1.4 cd-journal=joma no-vol=3 cd-vols= no-issue=1 article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2005 dt-pub=20051005 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effect of connective tissue growth factor (CCN2/CTGF) on proliferation and differentiation of mouse periodontal ligament-derived cells en-subtitle= kn-subtitle= en-abstract= kn-abstract=

Background: CCN2/CTGF is known to be involved in tooth germ development and periodontal tissue remodeling, as well as in mesenchymal tissue development and regeneration. In this present study, we investigated the roles of CCN2/CTGF in the proliferation and differentiation of periodontal ligament cells (murine periodontal ligament-derived cell line: MPL) in vitro.
Results: In cell cultures of MPL, the mRNA expression of the CCN2/CTGF gene was stronger in sparse cultures than in confluent ones and was significantly enhanced by TGF-ƒΐ. The addition of Recombinant CCN2/CTGF (rCCN2) to MPL cultures stimulated DNA synthesis and cell growth in a dose-dependent manner. Moreover, rCCN2 addition also enhanced the mRNA expression of alkaline phosphatase (ALPase), type I collagen, and periostin, the latter of which is considered to be a specific marker of the periosteum and periodontium; whereas it showed little effect on the mRNA expression of typical osteoblastic markers, e.g., osteopontin and osteocalcin. Finally, rCCN2/CTGF also stimulated ALPase activity and collagen synthesis.
Conclusion: These results taken together suggest important roles of CCN2/CTGF in the development and regeneration of periodontal tissue including the periodontal ligament.

en-copyright= kn-copyright= en-aut-name=AsanoMasahiro en-aut-sei=Asano en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KubotaSatoshi en-aut-sei=Kubota en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakanishiTohru en-aut-sei=Nakanishi en-aut-mei=Tohru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NishidaTakashi en-aut-sei=Nishida en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamaaiTomoichiro en-aut-sei=Yamaai en-aut-mei=Tomoichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YosimichiGen en-aut-sei=Yosimichi en-aut-mei=Gen kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OhyamaKazumi en-aut-sei=Ohyama en-aut-mei=Kazumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SugimotoTomosada en-aut-sei=Sugimoto en-aut-mei=Tomosada kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MurayamaYoji en-aut-sei=Murayama en-aut-mei=Yoji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=TakigawaMasaharu en-aut-sei=Takigawa en-aut-mei=Masaharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil= kn-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=2 en-affil= kn-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=3 en-affil= kn-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=4 en-affil= kn-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=5 en-affil= kn-affil=Department of Oral Functional Anatomy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=6 en-affil= kn-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=7 en-affil= kn-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=8 en-affil= kn-affil=Department of Oral Functional Anatomy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=9 en-affil= kn-affil=Department of Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=10 en-affil= kn-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=1999 dt-pub=19990325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=“ξœ—R—ˆ‚̐¬’·ˆφŽqHcs 24/CTGF‚Μ“ΑˆΩ“IŽσ—e‘Μ‚π‰ξ‚·‚ι“ξœΧ–E‘B₯•ͺ‰»‘£iμ—p en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name= en-aut-sei= en-aut-mei= kn-aut-name=Ό“c’ kn-aut-sei=Ό“c kn-aut-mei=’ aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=‰ͺŽR‘εŠw END