start-ver=1.4 cd-journal=joma no-vol=21 cd-vols= no-issue=18 article-no= start-page=6748 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200914 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Introducing the Amphibious Mudskipper Goby as a Unique Model to Evaluate Neuro/Endocrine Regulation of Behaviors Mediated by Buccal Sensation and Corticosteroids en-subtitle= kn-subtitle= en-abstract= kn-abstract=Some fish have acquired the ability to breathe air, but these fish can no longer flush their gills effectively when out of water. Hence, they have developed characteristic means for defense against external stressors, including thirst (osmolarity/ions) and toxicity. Amphibious fish, extant air-breathing fish emerged from water, may serve as models to examine physiological responses to these stressors. Some of these fish, including mudskipper gobies such asPeriophthalmodon schlosseri,Boleophthalmus boddartiand ourPeriophthalmus modestus, display distinct adaptational behaviors to these factors compared with fully aquatic fish. In this review, we introduce the mudskipper goby as a unique model to study the behaviors and the neuro/endocrine mechanisms of behavioral responses to the stressors. Our studies have shown that a local sensation of thirst in the buccal cavity-this being induced by dipsogenic hormones-motivates these fish to move to water through a forebrain response. The corticosteroid system, which is responsive to various stressors, also stimulates migration, possibly via the receptors in the brain. We suggest that such fish are an important model to deepen insights into the stress-related neuro/endocrine-behavioral effects. en-copyright= kn-copyright= en-aut-name=KatayamaYukitoshi en-aut-sei=Katayama en-aut-mei=Yukitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SaitoKazuhiro en-aut-sei=Saito en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SakamotoTatsuya en-aut-sei=Sakamoto en-aut-mei=Tatsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Ushimado Marine Institute, Faculty of Science, Okayama University kn-affil= affil-num=2 en-affil=Ushimado Marine Institute, Faculty of Science, Okayama University kn-affil= affil-num=3 en-affil=Ushimado Marine Institute, Faculty of Science, Okayama University kn-affil= en-keyword=stressors kn-keyword=stressors en-keyword=thirst kn-keyword=thirst en-keyword=angiotensin II kn-keyword=angiotensin II en-keyword=corticosteroids kn-keyword=corticosteroids en-keyword=amphibious fish kn-keyword=amphibious fish END start-ver=1.4 cd-journal=joma no-vol=100 cd-vols= no-issue=3 article-no= start-page=e24028 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210122 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Granulomatosis with polyangiitis with obstructive pneumonia progressing to hypertrophic pachymeningitis A case report en-subtitle= kn-subtitle= en-abstract= kn-abstract=Rationale:
Bronchial involvement alone is a rare initial manifestation of granulomatosis with polyangiitis (GPA). Herein, we report a case of refractory GPA with obstructive pneumonia caused by bronchial involvement.
Patient concerns:
A 65-year-old man complained of a 2-week cough and fever.
Diagnoses:
Considering the presence of opacities and multiple consolidations in both lungs due to obstruction or stenosis on the bronchus, which did not respond to antibiotics, and proteinase-3-antineutrophil cytoplasmic autoantibody positivity, he was diagnosed with GPA. Positron emission tomography- computed tomography scan revealed no abnormal findings in the upper respiratory tract.
Interventions:
He was treated with prednisolone (PSL, 50 mg/d) and intravenous cyclophosphamide.
Outcomes:
His general and respiratory symptoms improved. However, 8 weeks after PSL treatment at 20 mg/d, he developed a relapse of vasculitis along with sinusitis and hypertrophic pachymeningitis. Hence, PSL treatment was resumed to 50 mg/d, and weekly administration of rituximab was initiated. Consequently, the symptoms gradually mitigated.
Lessons:
GPA with bronchial involvement is often intractable and requires careful follow-up, which should include upper respiratory tract and hypertrophic pachymeningitis assessment. en-copyright= kn-copyright= en-aut-name=HayashiKeigo en-aut-sei=Hayashi en-aut-mei=Keigo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=WatanabeHaruki en-aut-sei=Watanabe en-aut-mei=Haruki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YamamuraYuriko en-aut-sei=Yamamura en-aut-mei=Yuriko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AsanoYosuke en-aut-sei=Asano en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KatayamaYukitoshi en-aut-sei=Katayama en-aut-mei=Yukitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=Hiramatsu-AsanoSumie en-aut-sei=Hiramatsu-Asano en-aut-mei=Sumie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OhashiKeiji en-aut-sei=Ohashi en-aut-mei=Keiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MorishitaMichiko en-aut-sei=Morishita en-aut-mei=Michiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NarazakiMariko en-aut-sei=Narazaki en-aut-mei=Mariko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MatsumotoYoshinori en-aut-sei=Matsumoto en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=SadaKen-Ei en-aut-sei=Sada en-aut-mei=Ken-Ei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=WadaJun en-aut-sei=Wada en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=bronchial stenosis kn-keyword=bronchial stenosis en-keyword=granulomatosis with polyangiitis kn-keyword=granulomatosis with polyangiitis en-keyword=hypertrophic pachymeningitis kn-keyword=hypertrophic pachymeningitis en-keyword=rituximab kn-keyword=rituximab END start-ver=1.4 cd-journal=joma no-vol=23 cd-vols= no-issue=1 article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210310 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Association of glucocorticoid doses and emotional health in lupus low disease activity state (LLDAS): a cross-sectional study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background While survival of systemic lupus erythematosus (SLE) patients has improved substantially, problems remain in the management of their emotional health. Medium to high-dose glucocorticoid doses are known to worsen emotional health; the effect is unclear among patients receiving relatively low-dose glucocorticoids. This study aims to investigate the association between low glucocorticoid doses and emotional health in lupus low disease activity state (LLDAS). Methods This cross-sectional study drew on data from SLE patients in 10 Japanese institutions. The participants were adult patients with SLE duration of >= 1 year who met LLDAS criteria at the study visit from April 2018 through September 2019. The exposure was the daily glucocorticoid dose (mg oral prednisolone). The outcome was the emotional health score of the lupus patient-reported outcome scale (range: 0 to 100). Multiple linear regression analysis was performed with adjustment for confounders including disease-related damage, activity, and psychotropic drug use. Results Of 192 patients enrolled, 175 were included in the analysis. Their characteristics were as follows: female, 89.7%; median age, 47 years (interquartile range (IQR): 37.0, 61.0). Median glucocorticoid dose was 4.0 mg (IQR 2.0, 5.0), and median emotional health score 79.2 (IQR 58.3, 91.7). Multiple linear regression analysis showed daily glucocorticoid doses to be associated with worse emotional health (beta coefficient = - 2.54 [95% confidence interval - 4.48 to - 0.60], P = 0.01). Conclusions Daily glucocorticoid doses were inversely associated with emotional health among SLE patients in LLDAS. Further studies are needed to determine whether glucocorticoid tapering leads to clinically significant improvements in emotional health. en-copyright= kn-copyright= en-aut-name=MiyawakiYoshia en-aut-sei=Miyawaki en-aut-mei=Yoshia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ShimizuSayaka en-aut-sei=Shimizu en-aut-mei=Sayaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OgawaYusuke en-aut-sei=Ogawa en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SadaKen-Ei en-aut-sei=Sada en-aut-mei=Ken-Ei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KatayamaYukitoshi en-aut-sei=Katayama en-aut-mei=Yukitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=AsanoYosuke en-aut-sei=Asano en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HayashiKeigo en-aut-sei=Hayashi en-aut-mei=Keigo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YamamuraYuriko en-aut-sei=Yamamura en-aut-mei=Yuriko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=Hiramatsu-AsanoSumie en-aut-sei=Hiramatsu-Asano en-aut-mei=Sumie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=OhashiKeiji en-aut-sei=Ohashi en-aut-mei=Keiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MorishitaMichiko en-aut-sei=Morishita en-aut-mei=Michiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=WatanabeHaruki en-aut-sei=Watanabe en-aut-mei=Haruki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=Takano-NarazakiMariko en-aut-sei=Takano-Narazaki en-aut-mei=Mariko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=MatsumotoYoshinori en-aut-sei=Matsumoto en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=YajimaNobuyuki en-aut-sei=Yajima en-aut-mei=Nobuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=YoshimiRyusuke en-aut-sei=Yoshimi en-aut-mei=Ryusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=ShimojimaYasuhiro en-aut-sei=Shimojima en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=OhnoShigeru en-aut-sei=Ohno en-aut-mei=Shigeru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=KajiyamaHiroshi en-aut-sei=Kajiyama en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=IchinoseKunihiro en-aut-sei=Ichinose en-aut-mei=Kunihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=SatoShuzo en-aut-sei=Sato en-aut-mei=Shuzo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=FujiwaraMichio en-aut-sei=Fujiwara en-aut-mei=Michio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=YamazakiHajime en-aut-sei=Yamazaki en-aut-mei=Hajime kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=YamamotoYosuke en-aut-sei=Yamamoto en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= en-aut-name=WadaJun en-aut-sei=Wada en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=25 ORCID= en-aut-name=FukuharaShunichi en-aut-sei=Fukuhara en-aut-mei=Shunichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=26 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Institute for Health Outcome & Process Evaluation Research (i-Hope International) kn-affil= affil-num=3 en-affil=Department of Healthcare Epidemiology, School of Public Health in the Graduate School of Medicine, Kyoto University kn-affil= affil-num=4 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Ushimado Marine Institute, Faculty of Science, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=13 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=14 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=15 en-affil=Department of Healthcare Epidemiology, School of Public Health in the Graduate School of Medicine, Kyoto University kn-affil= affil-num=16 en-affil=Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine kn-affil= affil-num=17 en-affil=Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine kn-affil= affil-num=18 en-affil=Center for Rheumatic Diseases, Yokohama City University Medical Center kn-affil= affil-num=19 en-affil=Department of Rheumatology and Applied Immunology, Faculty of Medicine, Saitama Medical University kn-affil= affil-num=20 en-affil=Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences kn-affil= affil-num=21 en-affil=Department of Rheumatology, Fukushima Medical University School of Medicine kn-affil= affil-num=22 en-affil=Department of Rheumatology, Yokohama Rosai Hospital kn-affil= affil-num=23 en-affil=Section of Clinical Epidemiology, Department of Community Medicine, Graduate School of Medicine, Kyoto University kn-affil= affil-num=24 en-affil=Department of Healthcare Epidemiology, School of Public Health in the Graduate School of Medicine, Kyoto University kn-affil= affil-num=25 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=26 en-affil=Section of Clinical Epidemiology, Department of Community Medicine, Graduate School of Medicine, Kyoto University kn-affil= en-keyword=Systemic lupus erythematosus kn-keyword=Systemic lupus erythematosus en-keyword=Glucocorticoid kn-keyword=Glucocorticoid en-keyword=Emotional health kn-keyword=Emotional health en-keyword=Patient-reported outcome kn-keyword=Patient-reported outcome en-keyword=Depression kn-keyword=Depression en-keyword=Anxiety kn-keyword=Anxiety en-keyword=Cross-sectional study kn-keyword=Cross-sectional study END start-ver=1.4 cd-journal=joma no-vol=11 cd-vols= no-issue=1 article-no= start-page=13315 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210625 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The gastrin-releasing peptide/bombesin system revisited by a reverse-evolutionary study considering Xenopus en-subtitle= kn-subtitle= en-abstract= kn-abstract=Bombesin is a putative antibacterial peptide isolated from the skin of the frog, Bombina bombina. Two related (bombesin-like) peptides, gastrin-releasing peptide (GRP) and neuromedin B (NMB) have been found in mammals. The history of GRP/bombesin discovery has caused little attention to be paid to the evolutionary relationship of GRP/bombesin and their receptors in vertebrates. We have classified the peptides and their receptors from the phylogenetic viewpoint using a newly established genetic database and bioinformatics. Here we show, by using a clawed frog (Xenopus tropicalis), that GRP is not a mammalian counterpart of bombesin and also that, whereas the GRP system is widely conserved among vertebrates, the NMB/bombesin system has diversified in certain lineages, in particular in frog species. To understand the derivation of GRP system in the ancestor of mammals, we have focused on the GRP system in Xenopus. Gene expression analyses combined with immunohistochemistry and Western blotting experiments demonstrated that GRP peptides and their receptors are distributed in the brain and stomach of Xenopus. We conclude that GRP peptides and their receptors have evolved from ancestral (GRP-like peptide) homologues to play multiple roles in both the gut and the brain as one of the 'gut-brain peptide' systems. en-copyright= kn-copyright= en-aut-name=HirookaAsuka en-aut-sei=Hirooka en-aut-mei=Asuka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HamadaMayuko en-aut-sei=Hamada en-aut-mei=Mayuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FujiyamaDaiki en-aut-sei=Fujiyama en-aut-mei=Daiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TakanamiKeiko en-aut-sei=Takanami en-aut-mei=Keiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KobayashiYasuhisa en-aut-sei=Kobayashi en-aut-mei=Yasuhisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OtiTakumi en-aut-sei=Oti en-aut-mei=Takumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KatayamaYukitoshi en-aut-sei=Katayama en-aut-mei=Yukitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SakamotoTatsuya en-aut-sei=Sakamoto en-aut-mei=Tatsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SakamotoHirotaka en-aut-sei=Sakamoto en-aut-mei=Hirotaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=7 en-affil=Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=8 en-affil=Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=9 en-affil=Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=289 cd-vols= no-issue=1985 article-no= start-page=20221126 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20221019 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Footedness for scratching itchy eyes in rodents en-subtitle= kn-subtitle= en-abstract= kn-abstract=The neural bases of itchy eye transmission remain unclear compared with those involved in body itch. Here, we show in rodents that the gastrin-releasing peptide receptor (GRPR) of the trigeminal sensory system is involved in the transmission of itchy eyes. Interestingly, we further demonstrate a difference in scratching behaviour between the left and right hindfeet in rodents; histamine instillation into the conjunctival sac of both eyes revealed right-foot biased laterality in the scratching movements. Unilateral histamine instillation specifically induced neural activation in the ipsilateral sensory pathway, with no significant difference between the activations following left- and right-eye instillations. Thus, the behavioural laterality is presumably due to right-foot preference in rodents. Genetically modified rats with specific depletion of Grpr-expressing neurons in the trigeminal sensory nucleus caudalis of the medulla oblongata exhibited fewer and shorter histamine-induced scratching movements than controls and eliminated the footedness. These results taken together indicate that the Grp-expressing neurons are required for the transmission of itch sensation from the eyes, but that foot preference is generated centrally. These findings could open up a new field of research on the mechanisms of the laterality in vertebrates and also offer new potential therapeutic approaches to refractory pruritic eye disorders. en-copyright= kn-copyright= en-aut-name=KatayamaYukitoshi en-aut-sei=Katayama en-aut-mei=Yukitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MiuraAyane en-aut-sei=Miura en-aut-mei=Ayane kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SakamotoTatsuya en-aut-sei=Sakamoto en-aut-mei=Tatsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TakanamiKeiko en-aut-sei=Takanami en-aut-mei=Keiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SakamotoHirotaka en-aut-sei=Sakamoto en-aut-mei=Hirotaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Ushimado, Setouchi kn-affil= affil-num=2 en-affil=Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Ushimado, Setouchi kn-affil= affil-num=3 en-affil=Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Ushimado, Setouchi kn-affil= affil-num=4 en-affil=Mouse Genomics Resources Laboratory, National Institute of Genetics, Yata, Mishima kn-affil= affil-num=5 en-affil=Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Ushimado, Setouchi kn-affil= en-keyword=itchy eyes kn-keyword=itchy eyes en-keyword=histamine kn-keyword=histamine en-keyword=gastrin-releasing peptide receptor kn-keyword=gastrin-releasing peptide receptor en-keyword=footedness kn-keyword=footedness END start-ver=1.4 cd-journal=joma no-vol=17 cd-vols= no-issue=6 article-no= start-page=e0270569 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220629 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Real-world data on vitamin D supplementation and its impacts in systemic lupus erythematosus: Cross-sectional analysis of a lupus registry of nationwide institutions (LUNA) en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background Although vitamin D concentration is reportedly associated with the pathogenesis and pathology of systemic lupus erythematosus (SLE), benefits of vitamin D supplementation in SLE patients have not been elucidated, to our knowledge. We investigated the clinical impacts of vitamin D supplementation in SLE. Methods A cross-sectional analysis was performed using data from a lupus registry of nationwide institutions. We evaluated vitamin D supplementation status associated with diseaserelated Systemic Lupus International Collaborating Clinics/American College of Rheumatology Damage Index (SDI) as a parameter of long-term disease activity control. Results Of the enrolled 870 patients (mean age: 45 years, mean disease duration: 153 months), 426 (49%) received vitamin D supplementation. Patients with vitamin D supplementation were younger (43.2 vs 47.5 years, P < 0.0001), received higher doses of prednisolone (7.6 vs 6.8 mg/day, P= 0.002), and showed higher estimated glomerular filtration rates (79.3 vs 75.3 mL/min/1.73m(2), P= 0.02) than those without supplementation. Disease-related SDI (0.73 +/- 1.12 vs 0.73 +/- 1.10, P = 0.75), total SDI, and SLE Disease Activity Index (SLEDAI) did not significantly differ between patients receiving and not receiving vitamin D supplementation. Even after excluding 136 patients who were highly recommended vitamin D supplementation (with age >= 75 years, history of bone fracture or avascular necrosis, denosumab use, and end-stage renal failure), disease-related SDI, total SDI, and SLEDAI did not significantly differ between the two groups. Conclusions Even with a possible Vitamin D deficiency and a high risk of bone fractures in SLE patients, only half of our cohort received its supplementation. The effect of vitamin D supplementation for disease activity control was not observed. en-copyright= kn-copyright= en-aut-name=HayashiKeigo en-aut-sei=Hayashi en-aut-mei=Keigo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SadaKen-Ei en-aut-sei=Sada en-aut-mei=Ken-Ei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AsanoYosuke en-aut-sei=Asano en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KatayamaYu en-aut-sei=Katayama en-aut-mei=Yu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OhashiKeiji en-aut-sei=Ohashi en-aut-mei=Keiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MorishitaMichiko en-aut-sei=Morishita en-aut-mei=Michiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MiyawakiYoshia en-aut-sei=Miyawaki en-aut-mei=Yoshia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=WatanabeHaruki en-aut-sei=Watanabe en-aut-mei=Haruki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KatsuyamaTakayuki en-aut-sei=Katsuyama en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=NarazakiMariko en-aut-sei=Narazaki en-aut-mei=Mariko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MatsumotoYoshinori en-aut-sei=Matsumoto en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=YajimaNobuyuki en-aut-sei=Yajima en-aut-mei=Nobuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=YoshimiRyusuke en-aut-sei=Yoshimi en-aut-mei=Ryusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=ShimojimaYasuhiro en-aut-sei=Shimojima en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=OhnoShigeru en-aut-sei=Ohno en-aut-mei=Shigeru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=KajiyamaHiroshi en-aut-sei=Kajiyama en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=IchinoseKunihiro en-aut-sei=Ichinose en-aut-mei=Kunihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=SatoShuzo en-aut-sei=Sato en-aut-mei=Shuzo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=FujiwaraMichio en-aut-sei=Fujiwara en-aut-mei=Michio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=WadaJun en-aut-sei=Wada en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= affil-num=1 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Department of Medicine, Division of Rheumatology, Showa University School of Medicine kn-affil= affil-num=13 en-affil=Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine kn-affil= affil-num=14 en-affil=Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine kn-affil= affil-num=15 en-affil=Center for Rheumatic Diseases, Yokohama City University Medical Center kn-affil= affil-num=16 en-affil=Department of Rheumatology and Applied Immunology, Faculty of Medicine, Saitama Medical University kn-affil= affil-num=17 en-affil=Department of Immunology and Rheumatology, Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences kn-affil= affil-num=18 en-affil=Department of Rheumatology, Fukushima Medical University School of Medicine kn-affil= affil-num=19 en-affil=Department of Rheumatology, Yokohama Rosai Hospital kn-affil= affil-num=20 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= END start-ver=1.4 cd-journal=joma no-vol=17 cd-vols= no-issue=12 article-no= start-page=e0277968 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20221207 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Behavioural osmoregulation during land invasion in fish: Prandial drinking and wetting of the dry skin en-subtitle= kn-subtitle= en-abstract= kn-abstract=Osmoregulatory behaviours should have evolutionarily modified for terrestrialisation of vertebrates. In mammals, sensations of buccal food and drying have immediate effects on postprandial thirst to prevent future systemic dehydration, and is thereby considered to be 'anticipatory thirst'. However, it remains unclear whether such an anticipatory response has been acquired in the non-tetrapod lineage. Using the mudskipper goby (Periophthalmus modestus) as a semi-terrestrial ray-finned fish, we herein investigated postprandial drinking and other unique features like full-body 'rolling' over on the back although these behaviours had not been considered to have osmoregulatory functions. In our observations on tidal flats, mudskippers migrated into water areas within a minute after terrestrial eating, and exhibited rolling behaviour with accompanying pectoral-fin movements. In aquarium experiments, frequency of migration into a water area for drinking increased within a few minutes after eating onset, without systemic dehydration. During their low humidity exposure, frequency of the rolling behaviour and pectoral-fin movements increased by more than five times to moisten the skin before systemic dehydration. These findings suggest anticipatory responses which arise from oral/gastrointestinal and cutaneous sensation in the goby. These sensation and motivation seem to have evolved in distantly related species in order to solve osmoregulatory challenges during terrestrialisation. en-copyright= kn-copyright= en-aut-name=KatayamaYukitoshi en-aut-sei=Katayama en-aut-mei=Yukitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TsukadaTakehiro en-aut-sei=Tsukada en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HyodoSusumu en-aut-sei=Hyodo en-aut-mei=Susumu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SakamotoHirotaka en-aut-sei=Sakamoto en-aut-mei=Hirotaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SakamotoTatsuya en-aut-sei=Sakamoto en-aut-mei=Tatsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Ushimado Marine Institute, Faculty of Science, Okayama University kn-affil= affil-num=2 en-affil=Department of Biomolecular Science, Toho University kn-affil= affil-num=3 en-affil=Laboratory of Physiology, Atmosphere and Ocean Research Institute, University of Tokyo kn-affil= affil-num=4 en-affil=Ushimado Marine Institute, Faculty of Science, Okayama University kn-affil= affil-num=5 en-affil=Ushimado Marine Institute, Faculty of Science, Okayama University kn-affil= END