start-ver=1.4 cd-journal=joma no-vol=18 cd-vols= no-issue=1 article-no= start-page=1 end-page=12 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240118 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Rhizoviticin is an alphaproteobacterial tailocin that mediates biocontrol of grapevine crown gall disease en-subtitle= kn-subtitle= en-abstract= kn-abstract=Tailocins are headless phage tail structures that mediate interbacterial antagonism. Although the prototypical tailocins, R- and F-pyocins, in Pseudomonas aeruginosa, and other predominantly R-type tailocins have been studied, their presence in Alphaproteobacteria remains unexplored. Here, we report the first alphaproteobacterial F-type tailocin, named rhizoviticin, as a determinant of the biocontrol activity of Allorhizobium vitis VAR03-1 against crown gall. Rhizoviticin is encoded by a chimeric prophage genome, one providing transcriptional regulators and the other contributing to tail formation and cell lysis, but lacking head formation genes. The rhizoviticin genome retains a nearly intact early phage region containing an integrase remnant and replication-related genes critical for downstream gene transcription, suggesting an ongoing transition of this locus from a prophage to a tailocin-coding region. Rhizoviticin is responsible for the most antagonistic activity in VAR03-1 culture supernatant against pathogenic A. vitis strain, and rhizoviticin deficiency resulted in a significant reduction in the antitumorigenic activity in planta. We identified the rhizoviticin-coding locus in eight additional A. vitis strains from diverse geographical locations, highlighting a unique survival strategy of certain Rhizobiales bacteria in the rhizosphere. These findings advance our understanding of the evolutionary dynamics of tailocins and provide a scientific foundation for employing rhizoviticin-producing strains in plant disease control. en-copyright= kn-copyright= en-aut-name=IshiiTomoya en-aut-sei=Ishii en-aut-mei=Tomoya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TsuchidaNatsuki en-aut-sei=Tsuchida en-aut-mei=Natsuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HemeldaNiarsi Merry en-aut-sei=Hemelda en-aut-mei=Niarsi Merry kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SaitoKirara en-aut-sei=Saito en-aut-mei=Kirara kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=BaoJiyuan en-aut-sei=Bao en-aut-mei=Jiyuan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=WatanabeMegumi en-aut-sei=Watanabe en-aut-mei=Megumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ToyodaAtsushi en-aut-sei=Toyoda en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MatsubaraTakehiro en-aut-sei=Matsubara en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SatoMayuko en-aut-sei=Sato en-aut-mei=Mayuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=ToyookaKiminori en-aut-sei=Toyooka en-aut-mei=Kiminori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=IshihamaNobuaki en-aut-sei=Ishihama en-aut-mei=Nobuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=ShirasuKen en-aut-sei=Shirasu en-aut-mei=Ken kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=MatsuiHidenori en-aut-sei=Matsui en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=ToyodaKazuhiro en-aut-sei=Toyoda en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=IchinoseYuki en-aut-sei=Ichinose en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=HayashiTetsuya en-aut-sei=Hayashi en-aut-mei=Tetsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=KawaguchiAkira en-aut-sei=Kawaguchi en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=NoutoshiYoshiteru en-aut-sei=Noutoshi en-aut-mei=Yoshiteru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Faculty of Agriculture, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=7 en-affil=Department of Genomics and Evolutionary Biology, National Institute of Genetics kn-affil= affil-num=8 en-affil=Okayama University Hospital Biobank, Okayama University Hospital kn-affil= affil-num=9 en-affil=Mass Spectrometry and Microscopy Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science kn-affil= affil-num=10 en-affil=Mass Spectrometry and Microscopy Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science kn-affil= affil-num=11 en-affil=Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science kn-affil= affil-num=12 en-affil=Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science kn-affil= affil-num=13 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=14 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=15 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=16 en-affil=Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University kn-affil= affil-num=17 en-affil=Western Region Agricultural Research Center (WARC), National Agricultural and Food Research Organization (NARO) kn-affil= affil-num=18 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=tailocin kn-keyword=tailocin en-keyword=phage tail-like bacteriocin kn-keyword=phage tail-like bacteriocin en-keyword=Allorhizobium vitris kn-keyword=Allorhizobium vitris en-keyword=Alphaproteobacteria kn-keyword=Alphaproteobacteria en-keyword=biocontrol kn-keyword=biocontrol en-keyword=crown gall disease kn-keyword=crown gall disease en-keyword=interbacterial antagonism kn-keyword=interbacterial antagonism en-keyword=grapevine kn-keyword=grapevine END start-ver=1.4 cd-journal=joma no-vol=10 cd-vols= no-issue=28 article-no= start-page=e00405-21 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210715 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Complete Genome Sequence of Pseudomonas amygdali pv. tabaci Strain 6605, a Causal Agent of Tobacco Wildfire Disease en-subtitle= kn-subtitle= en-abstract= kn-abstract=Pseudomonas amygdali pv. tabaci strain 6605 is the bacterial pathogen causing tobacco wildfire disease that has been used as a model for elucidating virulence mechanisms. Here, we present the complete genome sequence of P. amygdali pv. tabaci 6605 as a circular chromosome from reads using a PacBio sequencer. en-copyright= kn-copyright= en-aut-name=MatsuiHidenori en-aut-sei=Matsui en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NishimuraTakafumi en-aut-sei=Nishimura en-aut-mei=Takafumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AsaiShuta en-aut-sei=Asai en-aut-mei=Shuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MasudaSachiko en-aut-sei=Masuda en-aut-mei=Sachiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ShirasuKen en-aut-sei=Shirasu en-aut-mei=Ken kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YamamotoMikihiro en-aut-sei=Yamamoto en-aut-mei=Mikihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NoutoshiYoshiteru en-aut-sei=Noutoshi en-aut-mei=Yoshiteru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ToyodaKazuhiro en-aut-sei=Toyoda en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=IchinoseYuki en-aut-sei=Ichinose en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Sciences, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental and Life Sciences, Okayama University kn-affil= affil-num=3 en-affil=Center for Sustainable Resource Science, RIKEN kn-affil= affil-num=4 en-affil=Center for Sustainable Resource Science, RIKEN kn-affil= affil-num=5 en-affil=Center for Sustainable Resource Science, RIKEN kn-affil= affil-num=6 en-affil=Graduate School of Environmental and Life Sciences, Okayama University kn-affil= affil-num=7 en-affil=Graduate School of Environmental and Life Sciences, Okayama University kn-affil= affil-num=8 en-affil=Graduate School of Environmental and Life Sciences, Okayama University kn-affil= affil-num=9 en-affil=Graduate School of Environmental and Life Sciences, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=89 cd-vols= no-issue=4 article-no= start-page=219 end-page=223 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230612 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Positive chemotaxis to plant apoplastic fluids of Pseudomonas syringae pv. tabaci 6605 and metabolome analysis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Pseudomonas syringae pv. tabaci 6605 (Pta6605) is a causal agent of wildfire disease in host tobacco plants. Although chemotaxis has been shown to be necessary for Pta6605 in tobacco infection, the chemoattractants at the site of infection are unclear. Pta6605 was attracted to the apoplastic fluid from not only host tobacco leaves but also non-host plant leaves, indicating that Pta6605 is attracted to common plant metabolites. Metabolome analysis of apoplastic fluid from tobacco leaves revealed that amino acids including γ-aminobutyric acid and organic acids are abundant, suggesting that these compounds are potential chemoattractants. en-copyright= kn-copyright= en-aut-name=WatanabeYuta en-aut-sei=Watanabe en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TumewuStephany Angelia en-aut-sei=Tumewu en-aut-mei=Stephany Angelia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YamadaHajime en-aut-sei=Yamada en-aut-mei=Hajime kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MatsuiHidenori en-aut-sei=Matsui en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamamotoMikihiro en-aut-sei=Yamamoto en-aut-mei=Mikihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NoutoshiYoshiteru en-aut-sei=Noutoshi en-aut-mei=Yoshiteru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ToyodaKazuhiro en-aut-sei=Toyoda en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=IchinoseYuki en-aut-sei=Ichinose en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=The Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=The Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=3 en-affil=Faculty of Agriculture, Okayama University kn-affil= affil-num=4 en-affil=The Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=5 en-affil=The Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=6 en-affil=The Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=7 en-affil=The Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=8 en-affil=The Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=Apoplastic fluid kn-keyword=Apoplastic fluid en-keyword=Chemotaxis kn-keyword=Chemotaxis en-keyword=Chemoattractants kn-keyword=Chemoattractants en-keyword=Metabolome kn-keyword=Metabolome en-keyword=Pseudomonas syringae kn-keyword=Pseudomonas syringae END start-ver=1.4 cd-journal=joma no-vol=37 cd-vols= no-issue=1 article-no= start-page=ME21076 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=2022 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Identification of Aerotaxis Receptor Proteins Involved in Host Plant Infection by Pseudomonas syringae pv. tabaci 6605 en-subtitle= kn-subtitle= en-abstract= kn-abstract=Pseudomonas syringae pv. tabaci 6605 (Pta6605) is a foliar plant pathogen that causes wildfire disease on tobacco plants. It requires chemotaxis to enter plants and establish infection. While chemotactic signals appear to be the main mechanism by which Pta6605 performs directional movement, the involvement of aerotaxis or energy taxis by this foliar pathogen is currently unknown. Based on domain structures and similarity with more than 50 previously identified putative methyl-accepting chemotaxis proteins (MCPs), the genome of Pta6605 encodes three potential aerotaxis transducers. We identified AerA as the main aerotaxis transducer and found that it possesses a taxis-to-serine-and-repellent (Tsr)-like domain structure that supports a periplasmic 4HB-type ligand-binding domain (LBD). The secondary aerotaxis transducer, AerB, possesses a cytosolic PAS-type LBD, similar to the Aer of Escherichia coli and Pseudomonas aeruginosa. Aerotaxis ability by single and double mutant strains of aerA and aerB was weaker than that by wild-type Pta6605. On the other hand, another cytosolic PAS-type LBD containing MCP did not make a major contribution to Pta6605 aerotaxis in our assay system. Furthermore, mutations in aerotaxis transducer genes did not affect surface motility or chemotactic attraction to yeast extract. Single and double mutant strains of aerA and aerB showed less colonization in the early stage of host plant infection and lower biofilm production than wild-type Pta6605. These results demonstrate the presence of aerotaxis transducers and their contribution to host plant infection by Pta6605. en-copyright= kn-copyright= en-aut-name=TumewuStephany Angelia en-aut-sei=Tumewu en-aut-mei=Stephany Angelia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=WatanabeYuta en-aut-sei=Watanabe en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MatsuiHidenori en-aut-sei=Matsui en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YamamotoMikihiro en-aut-sei=Yamamoto en-aut-mei=Mikihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NoutoshiYoshiteru en-aut-sei=Noutoshi en-aut-mei=Yoshiteru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ToyodaKazuhiro en-aut-sei=Toyoda en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IchinoseYuki en-aut-sei=Ichinose en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Faculty of Agriculture, Okayama University kn-affil= affil-num=3 en-affil=Faculty of Agriculture, Okayama University kn-affil= affil-num=4 en-affil=Faculty of Agriculture, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=7 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=aerotaxis kn-keyword=aerotaxis en-keyword=aeroreceptor kn-keyword=aeroreceptor en-keyword=MCP kn-keyword=MCP en-keyword=Pseudomonas syringae kn-keyword=Pseudomonas syringae en-keyword=virulence kn-keyword=virulence END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue= article-no= start-page=1004184 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220915 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Time-series transcriptome of Brachypodium distachyon during bacterial flagellin-induced pattern-triggered immunity en-subtitle= kn-subtitle= en-abstract= kn-abstract=Plants protect themselves from microorganisms by inducing pattern-triggered immunity (PTI) via recognizing microbe-associated molecular patterns (MAMPs), conserved across many microbes. Although the MAMP perception mechanism and initial events during PTI have been well-characterized, knowledge of the transcriptomic changes in plants, especially monocots, is limited during the intermediate and terminal stages of PTI. Here, we report a time-series high-resolution RNA-sequencing (RNA-seq) analysis during PTI in the leaf disks of Brachypodium distachyon. We identified 6,039 differentially expressed genes (DEGs) in leaves sampled at 0, 0.5, 1, 3, 6, and 12 hours after treatment (hat) with the bacterial flagellin peptide flg22. The k-means clustering method classified these DEGs into 10 clusters (6 upregulated and 4 downregulated). Based on the results, we selected 10 PTI marker genes in B. distachyon. Gene ontology (GO) analysis suggested a tradeoff between defense responses and photosynthesis during PTI. The data indicated the recovery of photosynthesis started at least at 12 hat. Over-representation analysis of transcription factor genes and cis-regulatory elements in DEG promoters implied the contribution of 12 WRKY transcription factors in plant defense at the early stage of PTI induction. en-copyright= kn-copyright= en-aut-name=OgasaharaTsubasa en-aut-sei=Ogasahara en-aut-mei=Tsubasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KouzaiYusuke en-aut-sei=Kouzai en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WatanabeMegumi en-aut-sei=Watanabe en-aut-mei=Megumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TakahashiAkihiro en-aut-sei=Takahashi en-aut-mei=Akihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakahagiKotaro en-aut-sei=Takahagi en-aut-mei=Kotaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KimJune-Sik en-aut-sei=Kim en-aut-mei=June-Sik kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MatsuiHidenori en-aut-sei=Matsui en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YamamotoMikihiro en-aut-sei=Yamamoto en-aut-mei=Mikihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ToyodaKazuhiro en-aut-sei=Toyoda en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=IchinoseYuki en-aut-sei=Ichinose en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MochidaKeiichi en-aut-sei=Mochida en-aut-mei=Keiichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=NoutoshiYoshiteru en-aut-sei=Noutoshi en-aut-mei=Yoshiteru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=5 en-affil=Kihara Institute for Biological Research, Yokohama City University kn-affil= affil-num=6 en-affil=Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science kn-affil= affil-num=7 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=8 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=9 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=10 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=11 en-affil=Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science kn-affil= affil-num=12 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=Brachypodium distachyon kn-keyword=Brachypodium distachyon en-keyword=monocotyledonous plant kn-keyword=monocotyledonous plant en-keyword=microbe-associated molecular pattern kn-keyword=microbe-associated molecular pattern en-keyword=time-series transcriptome analysis kn-keyword=time-series transcriptome analysis en-keyword=reactive oxygen species kn-keyword=reactive oxygen species en-keyword=pattern-triggered immunity kn-keyword=pattern-triggered immunity END start-ver=1.4 cd-journal=joma no-vol=23 cd-vols= no-issue=6 article-no= start-page=885 end-page=894 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220301 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=HopAZ1, a type III effector of Pseudomonas amygdali pv. tabaci, induces a hypersensitive response in tobacco wildfire-resistant Nicotiana tabacum 'N509' en-subtitle= kn-subtitle= en-abstract= kn-abstract=Pseudomonas amygdali pv. tabaci (formerly Pseudomonas syringae pv. tabaci; Pta) is a gram-negative bacterium that causes bacterial wildfire disease in Nicotiana tabacum. The pathogen establishes infections by using a type III secretion system to inject type III effector proteins (T3Es) into cells, thereby interfering with the host & apos;s immune system. To counteract the effectors, plants have evolved disease-resistance genes and mechanisms to induce strong resistance on effector recognition. By screening a series of Pta T3E-deficient mutants, we have identified HopAZ1 as the T3E that induces disease resistance in N. tabacum 'N509'. Inoculation with the Pta increment hopAZ1 mutant did not induce resistance to Pta in N509. We also found that the Pta increment hopAZ1 mutant did not induce a hypersensitive response and promoted severe disease symptoms in N509. Furthermore, a C-terminal truncated HopAZ1 abolished HopAZ1-dependent cell death in N509. These results indicate that HopAZ1 is the avirulence factor that induces resistance to Pta by N509. en-copyright= kn-copyright= en-aut-name=KashiharaSachi en-aut-sei=Kashihara en-aut-mei=Sachi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NishimuraTakafumi en-aut-sei=Nishimura en-aut-mei=Takafumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NoutoshiYoshiteru en-aut-sei=Noutoshi en-aut-mei=Yoshiteru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YamamotoMikihiro en-aut-sei=Yamamoto en-aut-mei=Mikihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ToyodaKazuhiro en-aut-sei=Toyoda en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=IchinoseYuki en-aut-sei=Ichinose en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MatsuiHidenori en-aut-sei=Matsui en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=7 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=effector kn-keyword=effector en-keyword=hypersensitive responses kn-keyword=hypersensitive responses en-keyword=Pseudomonas syringae pv kn-keyword=Pseudomonas syringae pv en-keyword=tabaci kn-keyword=tabaci en-keyword=type III secretion system kn-keyword=type III secretion system END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue=1 article-no= start-page=76 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220106 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Surveillance of Pathogenicity of Rhizoctonia solani Japanese Isolates with Varied Anastomosis Groups and Subgroups on Arabidopsis thaliana en-subtitle= kn-subtitle= en-abstract= kn-abstract=Rhizoctonia solani is a necrotrophic plant pathogen with a wide host range. R. solani is a species complex consisting of thirteen anastomosis groups (AGs) defined by compatibility of hyphal fusion reaction and subgroups based on cultural morphology. The relationship between such classifications and host specificity remains elusive. Here, we investigated the pathogenicity of seventeen R. solani isolates (AG-1 to 7) in Japan towards Arabidopsis thaliana using leaf and soil inoculations. The tested AGs, except AG-3 and AG-6, induced symptoms in both methods with variations in pathogenicity. The virulence levels differed even within the same AG and subgroup. Some isolates showed tissue-specific infection behavior. Thus, the AGs and their subgroups are suggested to be not enough to define the virulence (host and tissue specificity) of R. solani. We also evaluated the virulence of the isolates on Arabidopsis plants pretreated with salicylic acid, jasmonic acid, and ethylene. No obvious effects were detected on the symptom formation by the virulence isolates, but ethylene and salicylic acid slightly enhanced the susceptibility to the weak and nonvirulent isolates. R. solani seems to be able to overcome the induced defense by these phytohormones in the infection to Arabidopsis. en-copyright= kn-copyright= en-aut-name=AbdelghanyMai Mohsen Ahmed en-aut-sei=Abdelghany en-aut-mei=Mai Mohsen Ahmed kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KurikawaMaria en-aut-sei=Kurikawa en-aut-mei=Maria kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WatanabeMegumi en-aut-sei=Watanabe en-aut-mei=Megumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MatsuiHidenori en-aut-sei=Matsui en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamamotoMikihiro en-aut-sei=Yamamoto en-aut-mei=Mikihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=IchinoseYuki en-aut-sei=Ichinose en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ToyodaKazuhiro en-aut-sei=Toyoda en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KouzaiYusuke en-aut-sei=Kouzai en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NoutoshiYoshiteru en-aut-sei=Noutoshi en-aut-mei=Yoshiteru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Department of Agriculture, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=7 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=8 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=9 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=Rhizoctonia solani kn-keyword=Rhizoctonia solani en-keyword=anastomosis group kn-keyword=anastomosis group en-keyword=phytohormones kn-keyword=phytohormones en-keyword=pathogenicity kn-keyword=pathogenicity en-keyword=Arabidopsis thaliana kn-keyword=Arabidopsis thaliana END start-ver=1.4 cd-journal=joma no-vol=296 cd-vols= no-issue= article-no= start-page=299 end-page=312 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210102 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Cluster II che genes of Pseudomonas syringae pv. tabaci 6605, orthologs of cluster I in Pseudomonas aeruginosa, are required for chemotaxis and virulence en-subtitle= kn-subtitle= en-abstract= kn-abstract=Pseudomonas syringae pv. tabaci 6605 (Pta6605) is a causal agent of wildfire disease in host tobacco plants and is highly motile. Pta6605 has multiple clusters of chemotaxis genes including cheA, a gene encoding a histidine kinase, cheY, a gene encoding a response regulator, mcp, a gene for a methyl-accepting chemotaxis protein, as well as flagellar and pili biogenesis genes. However, only two major chemotaxis gene clusters, cluster I and cluster II, possess cheA and cheY. Deletion mutants of cheA or cheY were constructed to evaluate their possible role in Pta6605 chemotaxis and virulence. Motility tests and a chemotaxis assay to known attractant demonstrated that cheA2 and cheY2 mutants were unable to swarm and to perform chemotaxis, whereas cheA1 and cheY1 mutants retained chemotaxis ability almost equal to that of the wild-type (WT) strain. Although WT and cheY1 mutants of Pta6605 caused severe disease symptoms on host tobacco leaves, the cheA2 and cheY2 mutants did not, and symptom development with cheA1 depended on the inoculation method. These results indicate that chemotaxis genes located in cluster II are required for optimal chemotaxis and host plant infection by Pta6605 and that cluster I may partially contribute to these phenotypes. en-copyright= kn-copyright= en-aut-name=TumewuStephany Angelia en-aut-sei=Tumewu en-aut-mei=Stephany Angelia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OgawaYujiro en-aut-sei=Ogawa en-aut-mei=Yujiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OkamotoTakumi en-aut-sei=Okamoto en-aut-mei=Takumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SugiharaYuka en-aut-sei=Sugihara en-aut-mei=Yuka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamadaHajime en-aut-sei=Yamada en-aut-mei=Hajime kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TaguchiFumiko en-aut-sei=Taguchi en-aut-mei=Fumiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MatsuiHidenori en-aut-sei=Matsui en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YamamotoMikihiro en-aut-sei=Yamamoto en-aut-mei=Mikihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NoutoshiYoshiteru en-aut-sei=Noutoshi en-aut-mei=Yoshiteru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=ToyodaKazuhiro en-aut-sei=Toyoda en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=IchinoseYuki en-aut-sei=Ichinose en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Faculty of Agriculture, Okayama University kn-affil= affil-num=3 en-affil=Faculty of Agriculture, Okayama University kn-affil= affil-num=4 en-affil=Faculty of Agriculture, Okayama University kn-affil= affil-num=5 en-affil=Faculty of Agriculture, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=7 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=8 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=9 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=10 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=11 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=Bacterial virulence kn-keyword=Bacterial virulence en-keyword=cheA kn-keyword=cheA en-keyword=Chemotaxis kn-keyword=Chemotaxis en-keyword=cheY kn-keyword=cheY en-keyword=Flagellar motility kn-keyword=Flagellar motility en-keyword=Pseudomonas kn-keyword=Pseudomonas END start-ver=1.4 cd-journal=joma no-vol=35 cd-vols= no-issue=4 article-no= start-page=ME20114 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=2020 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Requirement of γ-Aminobutyric Acid Chemotaxis for Virulence of Pseudomonas syringae pv. tabaci 6605 en-subtitle= kn-subtitle= en-abstract= kn-abstract=γ-Aminobutyric acid (GABA) is a widely distributed non-proteinogenic amino acid that accumulates in plants under biotic and abiotic stress conditions. Recent studies suggested that GABA also functions as an intracellular signaling molecule in plants and in signals mediating interactions between plants and phytopathogenic bacteria. However, the molecular mechanisms underlying GABA responses to bacterial pathogens remain unknown. In the present study, a GABA receptor, named McpG, was conserved in the highly motile plant-pathogenic bacteria Pseudomonas syringae pv. tabaci 6605 (Pta6605). We generated a deletion mutant of McpG to further investigate its involvement in GABA chemotaxis using quantitative capillary and qualitative plate assays. The wild-type strain of Pta6605 was attracted to GABA, while the ΔmcpG mutant abolished chemotaxis to 10? ?mM GABA. However, ΔmcpG retained chemotaxis to proteinogenic amino acids and succinic semialdehyde, a structural analog of GABA. Furthermore, ΔmcpG was unable to effectively induce disease on host tobacco plants in three plant inoculation assays: flood, dip, and infiltration inoculations. These results revealed that the GABA sensing of Pta6605 is important for the interaction of Pta6605 with its host tobacco plant. en-copyright= kn-copyright= en-aut-name=TumewuStephany Angelia en-aut-sei=Tumewu en-aut-mei=Stephany Angelia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatsuiHidenori en-aut-sei=Matsui en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YamamotoMikihiro en-aut-sei=Yamamoto en-aut-mei=Mikihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NoutoshiYoshiteru en-aut-sei=Noutoshi en-aut-mei=Yoshiteru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ToyodaKazuhiro en-aut-sei=Toyoda en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=IchinoseYuki en-aut-sei=Ichinose en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword= bacterial virulence kn-keyword= bacterial virulence en-keyword=chemotaxis kn-keyword=chemotaxis en-keyword=GABA kn-keyword=GABA en-keyword=plant-microbe interaction kn-keyword=plant-microbe interaction en-keyword=Pseudomonas kn-keyword=Pseudomonas END start-ver=1.4 cd-journal=joma no-vol=87 cd-vols= no-issue= article-no= start-page=24 end-page=29 dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20201010 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=HopH1 effectors of Pseudomonas syringae pv. tomato DC3000 and pv. syringae B728a induce HR cell death in nonhost eggplant Solanum torvum en-subtitle= kn-subtitle= en-abstract= kn-abstract=HopH1 is an effector protein of Pseudomonas syringae pv. tomato DC3000 and P. syringae pv. syringae B728a and is a homolog of the putative Zn-dependent protease effector Rip36 of Ralstonia solanacearum, which induces hypersensitive response (HR) cell death in a nonhost plant, Solanum torvum Sw. cv. Torubamubiga. Although P. syringae pv. phaseolicola (Pph) 1448A neither produces HopH1 nor induces HR cell death, hopH1-introduced Pph 1448A acquired the ability to induce HR. These results indicate that the putative Zn-protease HopH1 effector induces HR cell death in nonhost S. torvum. en-copyright= kn-copyright= en-aut-name=NaharKamrun en-aut-sei=Nahar en-aut-mei=Kamrun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MukaiharaTakafumi en-aut-sei=Mukaihara en-aut-mei=Takafumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TaguchiFumiko en-aut-sei=Taguchi en-aut-mei=Fumiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MatsuiHidenori en-aut-sei=Matsui en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamamotoMikihiro en-aut-sei=Yamamoto en-aut-mei=Mikihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ToyodaKazuhiro en-aut-sei=Toyoda en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NoutoshiYoshiteru en-aut-sei=Noutoshi en-aut-mei=Yoshiteru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ShiraishiTomonori en-aut-sei=Shiraishi en-aut-mei=Tomonori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=IchinoseYuki en-aut-sei=Ichinose en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Research Institute for Biological Sciences, Okayama (RIBS) kn-affil= affil-num=3 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=7 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=8 en-affil=Research Institute for Biological Sciences, Okayama (RIBS) kn-affil= affil-num=9 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= en-keyword=Effector kn-keyword=Effector en-keyword=HopH1 kn-keyword=HopH1 en-keyword=HR kn-keyword=HR en-keyword=Rip36 kn-keyword=Rip36 en-keyword=Zn-protease kn-keyword=Zn-protease END start-ver=1.4 cd-journal=joma no-vol=10 cd-vols= no-issue=1 article-no= start-page=14889 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200910 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Identification of effector candidate genes of Rhizoctonia solani AG-1 IA expressed during infection in Brachypodium distachyon en-subtitle= kn-subtitle= en-abstract= kn-abstract=Rhizoctonia solani is a necrotrophic phytopathogen belonging to basidiomycetes. It causes rice sheath blight which inflicts serious damage in rice production. The infection strategy of this pathogen remains unclear. We previously demonstrated that salicylic acid-induced immunity could block R. solani AG-1 IA infection in both rice and Brachypodium distachyon. R. solani may undergo biotrophic process using effector proteins to suppress host immunity before necrotrophic stage. To identify pathogen genes expressed at the early infection process, here we developed an inoculation method using B. distachyon which enables to sample an increased amount of semi-synchronous infection hyphae. Sixty-one R. solani secretory effector-like protein genes (RsSEPGs) were identified using in silico approach with the publicly available gene annotation of R. solani AG-1 IA genome and our RNA-sequencing results obtained from hyphae grown on agar medium. Expression of RsSEPGs was analyzed at 6, 10, 16, 24, and 32 h after inoculation by a quantitative reverse transcription-polymerase chain reaction and 52 genes could be detected at least on a single time point tested. Their expressions showed phase-specific patterns which were classified into 6 clusters. The 23 RsSEPGs in the cluster 1-3 and 29 RsSEPGs in the cluster 4-6 are expected to be involved in biotrophic and necrotrophic interactions, respectively. en-copyright= kn-copyright= en-aut-name=AbdelsalamSobhy S. H. en-aut-sei=Abdelsalam en-aut-mei=Sobhy S. H. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KouzaiYusuke en-aut-sei=Kouzai en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WatanabeMegumi en-aut-sei=Watanabe en-aut-mei=Megumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=InoueKomaki en-aut-sei=Inoue en-aut-mei=Komaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MatsuiHidenori en-aut-sei=Matsui en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YamamotoMikihiro en-aut-sei=Yamamoto en-aut-mei=Mikihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IchinoseYuki en-aut-sei=Ichinose en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ToyodaKazuhiro en-aut-sei=Toyoda en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TsugeSeiji en-aut-sei=Tsuge en-aut-mei=Seiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MochidaKeiichi en-aut-sei=Mochida en-aut-mei=Keiichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=NoutoshiYoshiteru en-aut-sei=Noutoshi en-aut-mei=Yoshiteru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science kn-affil= affil-num=3 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=4 en-affil=Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science kn-affil= affil-num=5 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=7 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=8 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=9 en-affil=Graduate School of Agriculture, Kyoto Prefectural University kn-affil= affil-num=10 en-affil=Institute for Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=11 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=Fungi kn-keyword=Fungi en-keyword=Microbiology kn-keyword=Microbiology en-keyword=Pathogens kn-keyword=Pathogens en-keyword=Plant immunity kn-keyword=Plant immunity en-keyword=Plant sciences kn-keyword=Plant sciences en-keyword=Transcription kn-keyword=Transcription END start-ver=1.4 cd-journal=joma no-vol=223-225 cd-vols= no-issue= article-no= start-page=72 end-page=78 dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=201908 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Quorum-dependent expression of rsmX and rsmY, small non-coding RNAs, in Pseudomonas syringae en-subtitle= kn-subtitle= en-abstract= kn-abstract=Pseudomonas syringae pathovars are known to produce N-acyl-homoserine lactones (AHL) as quorum-sensing molecules. However, many isolates, including P. syringae pv. tomato DC3000 (PtoDC3000), do not produce them. In P. syringae, psyI, which encodes an AHL synthase, and psyR, which encodes the transcription factor PsyR required for activation of psyI, are convergently transcribed. In P. amygdali pv. tabaci 6605 (Pta6605), there is one nucleotide between the stop codons of both psyI and psyR. However, the canonical stop codon for psyI in PtoDC3000 was converted to the cysteine codon by one nucleotide deletion, and 23 additional amino acids extended it to a C-terminal end. This resulted in overlapping of the open reading frame (ORF) for psyI and psyR. On the other hand, stop codons in the psyR ORF of P. syringae 7 isolates, including pv. phaseolicola and pv. glycinea, were found. These results indicate that many pathovars of P. syringae have genetically lost AHL production ability by the mutation of their responsible genes. To examine whether PtoDC3000 modulates the gene expression profile in a population-dependent manner, we carried out microarray analysis using RNAs prepared from low- and high-density cells. We found the expressions of rsmX and rsmY remarkably activated in high-density cells. The activated expressions of rsmX and rsmY were confirmed by Northern blot hybridization, but these expressions were abolished in a ΔgacA mutant of Pta6605. These results indicate that regardless of the ability to produce AHL, P. syringae regulates expression of the small noncoding RNAs rsmX/Y by currently unknown quorum-sensing molecules. en-copyright= kn-copyright= en-aut-name=NakatsuYukiko en-aut-sei=Nakatsu en-aut-mei=Yukiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatsuiHidenori en-aut-sei=Matsui en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YamamotoMikihiro en-aut-sei=Yamamoto en-aut-mei=Mikihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NoutoshiYoshiteru en-aut-sei=Noutoshi en-aut-mei=Yoshiteru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ToyodaKazuhiro en-aut-sei=Toyoda en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=IchinoseYuki en-aut-sei=Ichinose en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=N-acyl-homoserine lactone kn-keyword=N-acyl-homoserine lactone en-keyword=Gac two-component system kn-keyword=Gac two-component system en-keyword=Quorum sensing kn-keyword=Quorum sensing en-keyword=rsmX kn-keyword=rsmX en-keyword=rsmY kn-keyword=rsmY en-keyword=Pseudomonas syringae kn-keyword=Pseudomonas syringae END start-ver=1.4 cd-journal=joma no-vol=85 cd-vols= no-issue=6 article-no= start-page=405 end-page=412 dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=20190607 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A class III peroxidase PRX34 is a component of disease resistance in Arabidopsis en-subtitle= kn-subtitle= en-abstract= kn-abstract= PRX34 mediates the oxidative burst in Arabidopsis. Here we characterized two additional Arabidopsis prx34 null mutants (prx34-2, prx34-3), besides the well-studied prx34-1. Due to a decrease in corresponding peroxidase, the activity that generates reactive oxygen species (ROS) was significantly lower in cell wall extracts of prx34-2 and prx34-3 plants. Consistently, the prx34-2 and prx34-3 exhibited reduced accumulation both of ROS and callose in Flg22-elicitor-treated leaves, leading to enhanced susceptibility to bacterial and fungal pathogens. In contrast, ectopic expression of PRX34 in the wild type caused enhanced resistance. PRX34 is thus a component for disease resistance in Arabidopsis. en-copyright= kn-copyright= en-aut-name=ZhaoLei en-aut-sei=Zhao en-aut-mei=Lei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=Le Thi Phuong en-aut-sei=Le Thi Phuong en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=Mai Thanh Luan en-aut-sei=Mai Thanh Luan en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=Aprilia Nur Fitrianti en-aut-sei=Aprilia Nur Fitrianti en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MatsuiHidenori en-aut-sei=Matsui en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NakagamiHirofumi en-aut-sei=Nakagami en-aut-mei=Hirofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NoutoshiYoshiteru en-aut-sei=Noutoshi en-aut-mei=Yoshiteru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YamamotoMikihiro en-aut-sei=Yamamoto en-aut-mei=Mikihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=IchinoseYuki en-aut-sei=Ichinose en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=ShiraishiTomonori en-aut-sei=Shiraishi en-aut-mei=Tomonori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=ToyodaKazuhiro en-aut-sei=Toyoda en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Laboratory of Plant Pathology and Genetic Engineering, Graduate School of Environmental and Life ScienceOkayama University kn-affil= affil-num=2 en-affil=Laboratory of Plant Pathology and Genetic Engineering, Graduate School of Environmental and Life ScienceOkayama University kn-affil= affil-num=3 en-affil=Laboratory of Plant Pathology and Genetic Engineering, Graduate School of Environmental and Life ScienceOkayama University kn-affil= affil-num=4 en-affil=Laboratory of Plant Pathology and Genetic Engineering, Graduate School of Environmental and Life ScienceOkayama University kn-affil= affil-num=5 en-affil=Laboratory of Plant Pathology and Genetic Engineering, Graduate School of Environmental and Life ScienceOkayama University kn-affil= affil-num=6 en-affil=RIKEN Center for Sustainable Resource Science kn-affil= affil-num=7 en-affil=Laboratory of Plant Pathology and Genetic Engineering, Graduate School of Environmental and Life ScienceOkayama University kn-affil= affil-num=8 en-affil=Laboratory of Plant Pathology and Genetic Engineering, Graduate School of Environmental and Life ScienceOkayama University kn-affil= affil-num=9 en-affil=Laboratory of Plant Pathology and Genetic Engineering, Graduate School of Environmental and Life ScienceOkayama University kn-affil= affil-num=10 en-affil=Laboratory of Plant Pathology and Genetic Engineering, Graduate School of Environmental and Life ScienceOkayama University kn-affil= affil-num=11 en-affil=Laboratory of Plant Pathology and Genetic Engineering, Graduate School of Environmental and Life ScienceOkayama University kn-affil= en-keyword=Apoplastic oxidative burst kn-keyword=Apoplastic oxidative burst en-keyword=Arabidopsis kn-keyword=Arabidopsis en-keyword=Cell wall kn-keyword=Cell wall en-keyword=Class III peroxidase kn-keyword=Class III peroxidase en-keyword=PRX34 kn-keyword=PRX34 en-keyword=Reactive oxygen species (ROS) kn-keyword=Reactive oxygen species (ROS) END start-ver=1.4 cd-journal=joma no-vol=86 cd-vols= no-issue= article-no= start-page=124 end-page=133 dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=20191111 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=PsyR, a transcriptional regulator in quorum sensing system, binds lux box-like sequence in psyI promoter without AHL quorum sensing molecule and activates psyI transcription with AHL in Pseudomonas syringae pv. tabaci 6605 en-subtitle= kn-subtitle= en-abstract= kn-abstract= Quorum sensing (QS) is a mechanism for bacterial cell-cell communication using QS signals. N-acyl-homoserine lactones (AHLs), QS signals in Pseudomonas syringae pv. tabaci (Pta) 6605, are synthesized by an AHL synthase (PsyI) and recognized by the cognate transcription factor PsyR. To reveal the role of PsyR in virulence, we generated a psyR mutant and complemented strains of Pta 6605 and found that the psyR mutant is remarkably reduced in AHL production and ability to cause disease and propagate in host tobacco leaves. The phenotypes of complemented strains were restored to that of the wild type (WT). Because the psyR mutant lost nearly all AHL production, we investigated the function of PsyR in the transcription of psyI and production of AHL. Electrophoretic mobility shift assays suggested that the recombinant PsyR protein binds the promoter region of psyI but not psyR without AHL. The addition of AHL did not significantly affect this binding. The binding core sequence of this region was identified as a 20-bp lux box-like sequence. To reveal the function of PsyR and AHL on psyI transcription, we constructed a psyI promoter::lacZYA chimeric reporter gene, and inserted it into the WT and psyI mutant of Pta 6605. beta-galactosidase activity increased in a bacterial density-dependent manner in the WT and also in a psyI mutant after the addition of exogenous AHL. These results indicate that the solo PsyR binds the lux box in the psyI promoter and activates transcription in the concomitant presence of AHL. en-copyright= kn-copyright= en-aut-name=IchinoseYuki en-aut-sei=Ichinose en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TasakaYousuke en-aut-sei=Tasaka en-aut-mei=Yousuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YamamotoSatoru en-aut-sei=Yamamoto en-aut-mei=Satoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=InoueYuko en-aut-sei=Inoue en-aut-mei=Yuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakataMotohiro en-aut-sei=Takata en-aut-mei=Motohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NakatsuYukiko en-aut-sei=Nakatsu en-aut-mei=Yukiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TaguchiFumiko en-aut-sei=Taguchi en-aut-mei=Fumiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YamamotoMikihiro en-aut-sei=Yamamoto en-aut-mei=Mikihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ToyodaKazuhiro en-aut-sei=Toyoda en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=NoutoshiYoshiteru en-aut-sei=Noutoshi en-aut-mei=Yoshiteru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MatsuiHidenori en-aut-sei=Matsui en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life ScienceOkayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental and Life ScienceOkayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental and Life ScienceOkayama University kn-affil= affil-num=4 en-affil=Faculty of AgricultureOkayama University kn-affil= affil-num=5 en-affil=Graduate School of Environmental and Life ScienceOkayama University kn-affil= affil-num=6 en-affil=Graduate School of Environmental and Life ScienceOkayama University kn-affil= affil-num=7 en-affil=Graduate School of Environmental and Life ScienceOkayama University kn-affil= affil-num=8 en-affil=Graduate School of Environmental and Life ScienceOkayama University kn-affil= affil-num=9 en-affil=Graduate School of Environmental and Life ScienceOkayama University kn-affil= affil-num=10 en-affil=Graduate School of Environmental and Life ScienceOkayama University kn-affil= affil-num=11 en-affil=Graduate School of Environmental and Life ScienceOkayama University kn-affil= en-keyword=AHL kn-keyword=AHL en-keyword=PsyI kn-keyword=PsyI en-keyword=PsyR kn-keyword=PsyR en-keyword=Quorum sensing kn-keyword=Quorum sensing END start-ver=1.4 cd-journal=joma no-vol=102 cd-vols= no-issue= article-no= start-page=7 end-page=14 dt-received= dt-revised= dt-accepted= dt-pub-year=2013 dt-pub=20130201 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=A Volatile Substance, β-Caryophyllene, from Talaromyces wortmannii Promotes Growth and Tolerance to Diseases on Several Plants kn-title=β-caryophylleneの植物に対する生育促進作用 および耐病性増進作用の解析 en-subtitle= kn-subtitle= en-abstract=岡山県総社市の圃場から分離した植物生育促進菌Talaromyces wortmannii FS2が生産するβ-caryophylleneは,コマツナ(アブラナ科)のみならず,キュウリ(ウリ科),タバコ(ナス科)およびオオムギ(イネ科)など広汎な植物に対して,生育促進作用および耐病性増進作用を示したことから,有用な農業資材として利用可能であるものと考察した. kn-abstract=A plant growth-promoting fungus, Talaromyces wortmannii strain FS2 was isolated from an agricultural field at Okayama Pref. FS2 enhanced seed germination, root elongation and leaf growth of Brassica rapa var perviridis (Komatsuna). Such plant growth-promoting effect was observed in the same sealed chamber where FS2 was cultured on PDA medium separated from seedlings, suggesting effective volatile compound(s). GC?MS analysis showed that FS2 emitted at least seven terpenoids, of which a volatile was identified as β?caryophyllene. β?caryophyllene alone promoted the growth of cucumber, Nicotiana benthamiana and barley. Furthermore β?caryophyllene increased the yield of cucumber fruits. Interestingly, we found that β?caryophyllene conditioned these plants to be resistant to respective diseases caused by Colletotrichum orbiculare, Botrytis cinerea or Blumeria graminis f. sp hordei. The findings indicate that β?caryophyllene has desirable dual features and therefore, it is available to cultivation of many crops. en-copyright= kn-copyright= en-aut-name=YamagiwaYasuo en-aut-sei=Yamagiwa en-aut-mei=Yasuo kn-aut-name=山際泰夫 kn-aut-sei=山際 kn-aut-mei=泰夫 aut-affil-num=1 ORCID= en-aut-name=ToyodaKazuhiro en-aut-sei=Toyoda en-aut-mei=Kazuhiro kn-aut-name=豊田和弘 kn-aut-sei=豊田 kn-aut-mei=和弘 aut-affil-num=2 ORCID= en-aut-name=InagakiYoshishige en-aut-sei=Inagaki en-aut-mei=Yoshishige kn-aut-name=稲垣善茂 kn-aut-sei=稲垣 kn-aut-mei=善茂 aut-affil-num=3 ORCID= en-aut-name=IchinoseYuki en-aut-sei=Ichinose en-aut-mei=Yuki kn-aut-name=一瀬勇規 kn-aut-sei=一瀬 kn-aut-mei=勇規 aut-affil-num=4 ORCID= en-aut-name=HyakumachiaMitsuro en-aut-sei=Hyakumachia en-aut-mei=Mitsuro kn-aut-name=百町満朗 kn-aut-sei=百町 kn-aut-mei=満朗 aut-affil-num=5 ORCID= en-aut-name=ShiraishiTomonori en-aut-sei=Shiraishi en-aut-mei=Tomonori kn-aut-name=白石友紀 kn-aut-sei=白石 kn-aut-mei=友紀 aut-affil-num=6 ORCID= affil-num=1 en-affil= kn-affil= affil-num=2 en-affil= kn-affil=岡山大学 affil-num=3 en-affil= kn-affil=岡山大学 affil-num=4 en-affil= kn-affil=岡山大学 affil-num=5 en-affil= kn-affil=岐阜大学大学院 affil-num=6 en-affil= kn-affil=岡山大学 en-keyword=β-caryophyllene kn-keyword=β-caryophyllene en-keyword=plant growth-promoting kn-keyword=plant growth-promoting en-keyword=resistance induction kn-keyword=resistance induction en-keyword=Talaromyces wortmannii kn-keyword=Talaromyces wortmannii END start-ver=1.4 cd-journal=joma no-vol=102 cd-vols= no-issue= article-no= start-page=1 end-page=6 dt-received= dt-revised= dt-accepted= dt-pub-year=2013 dt-pub=20130201 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Isolation and Identification of a Plant Growth-Promoting Fungus from an Agricultural Field in Okayama Prefecture kn-title=岡山県の栽培圃場における植物生育促進菌の探索と同定 en-subtitle= kn-subtitle= en-abstract=本研究では,実際の生産圃場から植物生育促進菌(PGPF)の探索を試み,コマツナの生育を促進するFS2株を分離した.FS2株の形態観察並びにのITS1領域の系統樹解析から本菌をTalaromyces wortmanniiと同定した. kn-abstract=A plant growth-promoting fungus was isolated from an agricultural field in Okayama Prefecture, Japan. The strain FS2, which enhanced seed germination, root elongation and leaf growth of Brassica rapa var. perviridis, was identified as Talaromyces wortmannii based on ITS1 sequence and its morphology. en-copyright= kn-copyright= en-aut-name=YamagiwaYasuo en-aut-sei=Yamagiwa en-aut-mei=Yasuo kn-aut-name=山際泰夫 kn-aut-sei=山際 kn-aut-mei=泰夫 aut-affil-num=1 ORCID= en-aut-name=ToyodaKazuhiro en-aut-sei=Toyoda en-aut-mei=Kazuhiro kn-aut-name=豊田和弘 kn-aut-sei=豊田 kn-aut-mei=和弘 aut-affil-num=2 ORCID= en-aut-name=InagakiYoshishige en-aut-sei=Inagaki en-aut-mei=Yoshishige kn-aut-name=稲垣善茂 kn-aut-sei=稲垣 kn-aut-mei=善茂 aut-affil-num=3 ORCID= en-aut-name=IchinoseYuki en-aut-sei=Ichinose en-aut-mei=Yuki kn-aut-name=一瀬勇規 kn-aut-sei=一瀬 kn-aut-mei=勇規 aut-affil-num=4 ORCID= en-aut-name=ShiraishiTomonori en-aut-sei=Shiraishi en-aut-mei=Tomonori kn-aut-name=白石友紀 kn-aut-sei=白石 kn-aut-mei=友紀 aut-affil-num=5 ORCID= affil-num=1 en-affil= kn-affil= affil-num=2 en-affil= kn-affil=岡山大学 affil-num=3 en-affil= kn-affil=岡山大学 affil-num=4 en-affil= kn-affil=岡山大学 affil-num=5 en-affil= kn-affil=岡山大学 en-keyword=Brassica rapa var. perviridis (Komatsuna) kn-keyword=Brassica rapa var. perviridis (Komatsuna) en-keyword=ITS1 region kn-keyword=ITS1 region en-keyword=Plant growth-promoting fungus kn-keyword=Plant growth-promoting fungus en-keyword=Talaromyces wortmannii (Penicillium kloeckeri) kn-keyword=Talaromyces wortmannii (Penicillium kloeckeri) en-keyword=volatile compounds kn-keyword=volatile compounds END start-ver=1.4 cd-journal=joma no-vol=279 cd-vols= no-issue=3 article-no= start-page=303 end-page=312 dt-received= dt-revised= dt-accepted= dt-pub-year=2008 dt-pub=20080301 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Modulation of defense signal transduction by flagellin-induced WRKY41 transcription factor in Arabidopsis thaliana en-subtitle= kn-subtitle= en-abstract= kn-abstract=

Flagellin, a component of the flagellar filament of Pseudomonas syringae pv. tabaci 6605 (Pta), induces hypersensitive reaction in its non-host Arabidopsis thaliana. We identified the WRKY41 gene, which belongs to a multigene family encoding WRKY plant-specific transcription factors, as one of the flagellin-inducible genes in A. thaliana. Expression of WRKY41 is induced by inoculation with the incompatible pathogen P. syringae pv. tomato DC3000 (Pto) possessing AvrRpt2 and the non-host pathogens Pta within 6-h after inoculation, but not by inoculation with the compatible Pto. Expression of WRKY41 was also induced by inoculation of A. thaliana with an hrp-type three secretion system (T3SS)-defective mutant of Pto, indicating that effectors produced by T3SS in the Pto wild-type suppress the activation of WRKY41. Arabidopsis overexpressing WRKY41 showed enhanced resistance to the Pto wild-type but increased susceptibility to Erwinia carotovora EC1. WRKY41-overexpressing Arabidopsis constitutively expresses the PR5 gene, but suppresses the methyl jasmonate-induced PDF1.2 gene expression. These results demonstrate that WRKY41 may be a key regulator in the cross talk of salicylic acid and jasmonic acid pathways.

en-copyright= kn-copyright= en-aut-name=HigashiKuniaki en-aut-sei=Higashi en-aut-mei=Kuniaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IshigaYasuhiro en-aut-sei=Ishiga en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=InagakiYoshishige en-aut-sei=Inagaki en-aut-mei=Yoshishige kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ToyodaKazuhiro en-aut-sei=Toyoda en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ShiraishiTomonori en-aut-sei=Shiraishi en-aut-mei=Tomonori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=IchinoseYuki en-aut-sei=Ichinose en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil= kn-affil=Graduate School of Natural Science and Technology, Okayama University affil-num=2 en-affil= kn-affil=Graduate School of Natural Science and Technology, Okayama University affil-num=3 en-affil= kn-affil=Graduate School of Natural Science and Technology, Okayama University affil-num=4 en-affil= kn-affil=Graduate School of Natural Science and Technology, Okayama University affil-num=5 en-affil= kn-affil=Graduate School of Natural Science and Technology, Okayama University affil-num=6 en-affil= kn-affil=Graduate School of Natural Science and Technology, Okayama University en-keyword=flagellin kn-keyword=flagellin en-keyword=flg22 kn-keyword=flg22 en-keyword=FLS2 kn-keyword=FLS2 en-keyword=MAMP signaling pathway kn-keyword=MAMP signaling pathway en-keyword=WRKY41 kn-keyword=WRKY41 END start-ver=1.4 cd-journal=joma no-vol=279 cd-vols= no-issue=4 article-no= start-page=313 end-page=322 dt-received= dt-revised= dt-accepted= dt-pub-year=2008 dt-pub=200804 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Gac two-component system in Pseudomonas syringae pv. tabaci is required for virulence but not for hypersensitive reaction en-subtitle= kn-subtitle= en-abstract= kn-abstract=

Pseudomonas syringae pv. tabaci 6605 causes wildfire disease on host tobacco plants. To investigate the regulatory mechanism of the expression of virulence, Gac two-Component system-defective mutants, Delta gacA and Delta gacS, and a double mutant, Delta gacA Delta gacS, were generated. These mutants produced smaller amounts of N-acyl homoserine lactones required for quorum sensing, had lost swarming motility, and had reduced expression of virulence-related hrp genes and the algT gene required for exopolysaccharide production. The ability of the mutants to cause disease symptoms in their host tobacco plant was remarkably reduced, while they retained the ability to induce hypersensitive reaction (HR) in the nonhost plants. These results indicated that the Gac two-component system of P. syringae pv. tabaci 6605 is indispensable for virulence on the host plant, but not for HR induction in the nonhost plants.

en-copyright= kn-copyright= en-aut-name=MarutaniMizuri en-aut-sei=Marutani en-aut-mei=Mizuri kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TaguchiFumiko en-aut-sei=Taguchi en-aut-mei=Fumiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OgawaYujiro en-aut-sei=Ogawa en-aut-mei=Yujiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HossainMijan Md. en-aut-sei=Hossain en-aut-mei=Mijan Md. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YoshishigeInagaki en-aut-sei=Yoshishige en-aut-mei=Inagaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ToyodaKazuhiro en-aut-sei=Toyoda en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ShiraishiTomonori en-aut-sei=Shiraishi en-aut-mei=Tomonori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=IchinoseYuki en-aut-sei=Ichinose en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil= kn-affil=Laboratory of Plant Pathology and Genetic Engineering, Graduate School of Natural Science and Technology, Okayama University affil-num=2 en-affil= kn-affil=Laboratory of Plant Pathology and Genetic Engineering, Graduate School of Natural Science and Technology, Okayama University affil-num=3 en-affil= kn-affil=Laboratory of Plant Pathology and Genetic Engineering, Graduate School of Natural Science and Technology, Okayama University affil-num=4 en-affil= kn-affil=Laboratory of Plant Pathology and Genetic Engineering, Graduate School of Natural Science and Technology, Okayama University affil-num=5 en-affil= kn-affil=Laboratory of Plant Pathology and Genetic Engineering, Graduate School of Natural Science and Technology, Okayama University affil-num=6 en-affil= kn-affil=Laboratory of Plant Pathology and Genetic Engineering, Graduate School of Natural Science and Technology, Okayama University affil-num=7 en-affil= kn-affil=Laboratory of Plant Pathology and Genetic Engineering, Graduate School of Natural Science and Technology, Okayama University affil-num=8 en-affil= kn-affil=Laboratory of Plant Pathology and Genetic Engineering, Graduate School of Natural Science and Technology, Okayama University en-keyword=GacA kn-keyword=GacA en-keyword=GacS kn-keyword=GacS en-keyword=Pseudomonas syringae pv. tabaci kn-keyword=Pseudomonas syringae pv. tabaci en-keyword=quorum sensing kn-keyword=quorum sensing en-keyword=two-component system kn-keyword=two-component system END start-ver=1.4 cd-journal=joma no-vol=18 cd-vols= no-issue=2 article-no= start-page=152 end-page=159 dt-received= dt-revised= dt-accepted= dt-pub-year=2007 dt-pub=20070101 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Elicitin-responsive lectin-like receptor kinase genes in BY-2 cells en-subtitle= kn-subtitle= en-abstract= kn-abstract=

The inhibition of elicitor-induced plant defense responses by the protein kinase inhibitors K252a and staurosporine indicates that defense responses require protein phosphorylation. We isolated a cDNA clone encoding Nicotiana tabacum lectin-like receptor protein kinase 1 ( NtlecRK1), an elicitor-responsive gene; in tobacco bright yellow ( BY-2) cells by a differential display method. NtlecRK forms a gene family with at least three members in tobacco. All three NtlecRK genes potentially encode the N-terminal legume lectin domain, transmembrane domain and C-terminal Ser/Thr-type protein kinase domain. Green fluorescent protein ( GFP) fusion showed that the NtlecRK1 protein was located on the plasma membrane. In addition, NtlecRK1 and 3 were responsive to INF1 elicitin and the bacterial elicitor harpin. These results indicate that NtlecRKs are membrane-located protein kinases that are induced during defense responses in BY-2 cells.

en-copyright= kn-copyright= en-aut-name=SasabeMichiko en-aut-sei=Sasabe en-aut-mei=Michiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NaitoKana en-aut-sei=Naito en-aut-mei=Kana kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SuenagaHiroko en-aut-sei=Suenaga en-aut-mei=Hiroko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IkedaTakako en-aut-sei=Ikeda en-aut-mei=Takako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ToyodaKazuhiro en-aut-sei=Toyoda en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=InagakiYoshishige en-aut-sei=Inagaki en-aut-mei=Yoshishige kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ShiraishiTomonori en-aut-sei=Shiraishi en-aut-mei=Tomonori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=IchinoseYuki en-aut-sei=Ichinose en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil= kn-affil=Laboratory of Plant Pathology & Genetic Engineering, Graduate School of Natural Science and Technology, Okayama University affil-num=2 en-affil= kn-affil=Laboratory of Plant Pathology & Genetic Engineering, Graduate School of Natural Science and Technology, Okayama University affil-num=3 en-affil= kn-affil=Laboratory of Plant Pathology & Genetic Engineering, Graduate School of Natural Science and Technology, Okayama University affil-num=4 en-affil= kn-affil=Laboratory of Plant Pathology & Genetic Engineering, Graduate School of Natural Science and Technology, Okayama University affil-num=5 en-affil= kn-affil=Laboratory of Plant Pathology & Genetic Engineering, Graduate School of Natural Science and Technology, Okayama University affil-num=6 en-affil= kn-affil=Laboratory of Plant Pathology & Genetic Engineering, Graduate School of Natural Science and Technology, Okayama University affil-num=7 en-affil= kn-affil=Laboratory of Plant Pathology & Genetic Engineering, Graduate School of Natural Science and Technology, Okayama University affil-num=8 en-affil= kn-affil=Laboratory of Plant Pathology & Genetic Engineering, Graduate School of Natural Science and Technology, Okayama University en-keyword=defense response kn-keyword=defense response en-keyword=elicitin kn-keyword=elicitin en-keyword=lectin kn-keyword=lectin en-keyword=receptor-like kinase kn-keyword=receptor-like kinase en-keyword=tobacco BY-2 kn-keyword=tobacco BY-2 END start-ver=1.4 cd-journal=joma no-vol=188 cd-vols= no-issue=24 article-no= start-page=8376 end-page=8384 dt-received= dt-revised= dt-accepted= dt-pub-year=2006 dt-pub=200612 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A homologue of the 3-oxoacyl-(acyl carrier protein) synthase III gene located in the glycosylation island of Pseudomonas syringae pv. tabaci regulates virulence factors via N-acyl homoserine lactone and fatty acid synthesis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Pseudomonas syringae pv. tabaci 6605 possesses a genetic region involved in flagellin glycosylation. This region is composed of three open reading frames: orf1, orf2, and orf3. Our previous study revealed that orf1 and orf2 encode glycosyltransferases; on the other hand, orf3 has no role in posttranslational modification of flagellin. Although the function of Orf3 remained unclear, an orf3 deletion mutant (Delta orf3 mutant) had reduced virulence on tobacco plants. Orf3 shows significant homology to a 3-oxoacyl-(acyl carrier protein) synthase III in the fatty acid elongation cycle. The Delta orf3 mutant had a significantly reduced ability to form acyl homoserine lactones (AHLs), which are quorum-sensing molecules, suggesting that Orf3 is required for AHL synthesis. In comparison with the wild-type strain, swarming motility, biosurfactant production, and tolerance to H2O2 and antibiotics were enhanced in the Delta orf3 mutant. A scanning electron micrograph of inoculated bacteria on the tobacco leaf surface revealed that there is little extracellular polymeric substance matrix surrounding the cells in the Delta orf3 mutant. The phenotypes of the Delta orf3 mutant and an AHL synthesis (Delta psyI) mutant were similar, although the mutant-specific characteristics were more extreme in the Delta orf3 mutant. The swarming motility of the Delta orf3 mutant was greater than that of the Delta psyI mutant. This was attributed to the synergistic effects of the overproduction of biosurfactants and/or alternative fatty acid metabolism in the Delta orf3 mutant. Furthermore, the amounts of iron and biosurfactant seem to be involved in biofilm development under quorum-sensing regulation in P. syringae pv. tabaci 6605. en-copyright= kn-copyright= en-aut-name=TaguchiFumiko en-aut-sei=Taguchi en-aut-mei=Fumiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OgawaYujiro en-aut-sei=Ogawa en-aut-mei=Yujiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TakeuchiKasumi en-aut-sei=Takeuchi en-aut-mei=Kasumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SuzukiTomoko en-aut-sei=Suzuki en-aut-mei=Tomoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ToyodaKazuhiro en-aut-sei=Toyoda en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ShiraishiTomonori en-aut-sei=Shiraishi en-aut-mei=Tomonori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IchinoseYuki en-aut-sei=Ichinose en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=2 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=3 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=4 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=5 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=6 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=7 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University en-keyword=TO-CELL SIGNALS kn-keyword=TO-CELL SIGNALS en-keyword=AERUGINOSA kn-keyword=AERUGINOSA en-keyword=FLAGELLIN kn-keyword=FLAGELLIN en-keyword=BIOFILMS kn-keyword=BIOFILMS en-keyword=MOTILITY kn-keyword=MOTILITY en-keyword=IRON kn-keyword=IRON en-keyword=IDENTIFICATION kn-keyword=IDENTIFICATION en-keyword=SIDEROPHORES kn-keyword=SIDEROPHORES en-keyword=SPECIFICITY kn-keyword=SPECIFICITY en-keyword=FLUORESCENT kn-keyword=FLUORESCENT END start-ver=1.4 cd-journal=joma no-vol=189 cd-vols= no-issue=19 article-no= start-page=6945 end-page=6956 dt-received= dt-revised= dt-accepted= dt-pub-year=2007 dt-pub=200710 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Flagellin Glycans from two pathovars of Pseudomonas syringae contain rhamnose in D and L configurations in different ratios and modified 4-amino-4,6-dideoxyglucose en-subtitle= kn-subtitle= en-abstract= kn-abstract=Flagellins from Pseudomonas syringae pv. glycinea race 4 and Pseudomonas syringae pv. tabaci 6605 have been found to be glycosylated. Glycosylation of flagellin is essential for bacterial virulence and is also involved in the determination of host specificity. Flagellin glycans from both pathovars were characterized, and common sites of glycosylation were identified on six serine residues (positions 143, 164, 176, 183, 193, and 201). The structure of the glycan at serine 201 (S201) of flagellin from each pathovar was determined by sugar composition analysis, mass spectrometry, and H-1 and C-13 nuclear magnetic resonance spectroscopy. These analyses showed that the S201 glycans from both pathovars were composed of a common unique trisaccharide consisting of two rhamnosyl (Rha) residues and one modified 4-amino-4,6-dideoxyglucosyl (Qui4N) residue, beta-D-Quip4N(3-hydroxy-1-oxobutyl)2Me-(1 -> 3)-alpha-L-Rhap-(1 -> 2)-alpha-L-Rhap. Furthermore, mass analysis suggests that the glycans on each of the six serine residues are composed of similar trisaccharide units. Determination of the enantiomeric ratio of Rha from the flagellin proteins showed that flagellin from P. syringae pv. tabaci 6605 consisted solely Of L-Rha, whereas P. syringae pv. glycinea race 4 flagellin contained both L-Rha and D-Rha at a molar ratio of about 4:1. Taking these findings together with those from our previous study, we conclude that these flagellin glycan structures may be important for the virulence and host specificity of P. syringae. en-copyright= kn-copyright= en-aut-name=TakeuchiKasumi en-aut-sei=Takeuchi en-aut-mei=Kasumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OnoHiroshi en-aut-sei=Ono en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YoshidaMitsuru en-aut-sei=Yoshida en-aut-mei=Mitsuru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IshiiTadashi en-aut-sei=Ishii en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KatohEtsuko en-aut-sei=Katoh en-aut-mei=Etsuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TaguchiFumiko en-aut-sei=Taguchi en-aut-mei=Fumiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MikiRyuji en-aut-sei=Miki en-aut-mei=Ryuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MurataKatsuyoshi en-aut-sei=Murata en-aut-mei=Katsuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KakuHanae en-aut-sei=Kaku en-aut-mei=Hanae kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=IchinoseYuki en-aut-sei=Ichinose en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil= kn-affil=National Institute of Agrobiological Sciences affil-num=2 en-affil= kn-affil=National Food Research Institute affil-num=3 en-affil= kn-affil=National Food Research Institute affil-num=4 en-affil= kn-affil=Forestry and Forest Products Research Institute affil-num=5 en-affil= kn-affil=National Institute of Agrobiological Sciences affil-num=6 en-affil= kn-affil=Graduate School of Natural Science and Technology, Okayama University affil-num=7 en-affil= kn-affil=Graduate School of Natural Science and Technology, Okayama University affil-num=8 en-affil= kn-affil=National Institute of Agrobiological Sciences affil-num=9 en-affil= kn-affil=Faculty of Agriculture, Meiji University affil-num=10 en-affil= kn-affil=Graduate School of Natural Science and Technology, Okayama University en-keyword=INNATE IMMUNE-RESPONSE kn-keyword=INNATE IMMUNE-RESPONSE en-keyword=TOLL-LIKE RECEPTOR-5 kn-keyword=TOLL-LIKE RECEPTOR-5 en-keyword=PV. TABACI kn-keyword=PV. TABACI en-keyword=POSTTRANSLATIONAL MODIFICATION kn-keyword=POSTTRANSLATIONAL MODIFICATION en-keyword=BACTERIAL FLAGELLIN kn-keyword=BACTERIAL FLAGELLIN en-keyword=STRUCTURAL-ANALYSIS kn-keyword=STRUCTURAL-ANALYSIS en-keyword=AMINO-ACIDS kn-keyword=AMINO-ACIDS en-keyword=GLYCOSYLATION kn-keyword=GLYCOSYLATION en-keyword=AERUGINOSA kn-keyword=AERUGINOSA en-keyword=IDENTIFICATION kn-keyword=IDENTIFICATION END start-ver=1.4 cd-journal=joma no-vol=190 cd-vols= no-issue=2 article-no= start-page=764 end-page=768 dt-received= dt-revised= dt-accepted= dt-pub-year=2008 dt-pub=20080101 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effects of glycosylation on swimming ability and flagellar polymorphic transformation in Pseudomonas syringae pv. tabaci 6605 en-subtitle= kn-subtitle= en-abstract= kn-abstract=

The role of flagellin glycosylation on motility was investigated in Pseudomonas syringae pv. tabaci. The swimming activity of glycosylation-defective mutants was prominently decreased in a highly viscous medium. The mutants showed differences in polymorphic transitions and in the bundle formation of flagella, indicating that glycosylation stabilizes the filament structure and lubricates the rotation of the bundle.

en-copyright= kn-copyright= en-aut-name=TaguchiFumiko en-aut-sei=Taguchi en-aut-mei=Fumiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ShibataSatoshi en-aut-sei=Shibata en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SuzukiTomoko en-aut-sei=Suzuki en-aut-mei=Tomoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OgawaYujiro en-aut-sei=Ogawa en-aut-mei=Yujiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=AizawaShin-Ichi en-aut-sei=Aizawa en-aut-mei=Shin-Ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TakeuchiKasumi en-aut-sei=Takeuchi en-aut-mei=Kasumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IchinoseYuki en-aut-sei=Ichinose en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil= kn-affil=Graduate School of Natural Science and Technology, Okayama University affil-num=2 en-affil= kn-affil=Department of Life Science, Prefectural University of Hiroshima affil-num=3 en-affil= kn-affil=Graduate School of Natural Science and Technology, Okayama University affil-num=4 en-affil= kn-affil=Graduate School of Natural Science and Technology, Okayama University affil-num=5 en-affil= kn-affil=Department of Life Science, Prefectural University of Hiroshima affil-num=6 en-affil= kn-affil=National Institute of Agrobiological Sciences affil-num=7 en-affil= kn-affil=Graduate School of Natural Science and Technology, Okayama University END start-ver=1.4 cd-journal=joma no-vol=271 cd-vols= no-issue=1 article-no= start-page=1 end-page=10 dt-received= dt-revised= dt-accepted= dt-pub-year=2004 dt-pub=20041 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Structure and expression of 12-oxophytodienoate reductase (OPR) subgroup I gene in pea and oxidoreductase activity of their recombinant proteins en-subtitle= kn-subtitle= en-abstract= kn-abstract=

Recently, we observed that expression of a pea gene (S64) encoding an oxophytodienoic acid reductase (OPR) was induced by a suppressor of pea defense responses, secreted by the pea pathogen Mycosphaerella pinodes. Because it is known that OPRs are usually encoded by families of homologous genes, we screened for genomic and cDNA clones encoding members of this putative OPR family in pea. We isolated five members of the OPR gene family from a pea genomic DNA library, and amplified six cDNA clones, including S64, by RT-PCR (reverse transcriptase-PCR). Sequencing analysis revealed that S64 corresponds to PsOPR2, and the amino acid sequences of the predicted products of the six OPR-like genes shared more than 80% identity with each other. Based on their sequence similarity, all these OPR-like genes code for OPRs of subgroup I, i.e., enzymes which are not required for jasmonic acid biosynthesis. However, the genes varied in their exon/intron organization and in their promoter sequences. To investigate the expression of each individual OPR-like gene, RT-PCR was performed using gene-specific primers. The results indicated that the OPR-like gene most strongly induced by the inoculation of pea plants with a compatible pathogen and by treatment with the suppressor from M. pinodes was PsOPR2. Furthermore, the ability of the six recombinant OPR-like proteins to reduce a model substrate, 2-cyclohexen-1-one (2-CyHE), was investigated. The results indicated that PsOPR1, 4 and 6 display robust activity, and PsOPR2 has a most remarkable ability to reduce 2-CyHE, whereas PsOPR3 has little and PsOPR5 does not reduce this compound. Thus, the six OPR-like proteins can be classified into four types. Interestingly, the gene structures, expression profiles, and enzymatic activities used to classify each member of the pea OPR-like gene family are clearly correlated, indicating that each member of this OPR-like family has a distinct function.

en-copyright= kn-copyright= en-aut-name=MatsuiH en-aut-sei=Matsui en-aut-mei=H kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakamuraG en-aut-sei=Nakamura en-aut-mei=G kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IshigaY en-aut-sei=Ishiga en-aut-mei=Y kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ToshimaH en-aut-sei=Toshima en-aut-mei=H kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=InagakiY en-aut-sei=Inagaki en-aut-mei=Y kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ToyodaK en-aut-sei=Toyoda en-aut-mei=K kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ShiraishiT en-aut-sei=Shiraishi en-aut-mei=T kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=IchinoseYuki en-aut-sei=Ichinose en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil= kn-affil=Laboratory of Plant Pathology and Genetic Engineering, Faculty of Agriculture, Okayama University affil-num=2 en-affil= kn-affil=Laboratory of Plant Pathology and Genetic Engineering, Faculty of Agriculture, Okayama University affil-num=3 en-affil= kn-affil=Laboratory of Plant Pathology and Genetic Engineering, Faculty of Agriculture, Okayama University affil-num=4 en-affil= kn-affil=Ibaraki University affil-num=5 en-affil= kn-affil=Laboratory of Plant Pathology and Genetic Engineering, Faculty of Agriculture, Okayama University affil-num=6 en-affil= kn-affil=Laboratory of Plant Pathology and Genetic Engineering, Faculty of Agriculture, Okayama University affil-num=7 en-affil= kn-affil=Laboratory of Plant Pathology and Genetic Engineering, Faculty of Agriculture, Okayama University affil-num=8 en-affil= kn-affil=Laboratory of Plant Pathology and Genetic Engineering, Faculty of Agriculture, Okayama University en-keyword=coronatine kn-keyword=coronatine en-keyword=flavoproteins kn-keyword=flavoproteins en-keyword=Jasmonic acid kn-keyword=Jasmonic acid en-keyword=oxophytodienoic acid reductase kn-keyword=oxophytodienoic acid reductase en-keyword=OPR kn-keyword=OPR en-keyword=suppressor kn-keyword=suppressor END start-ver=1.4 cd-journal=joma no-vol=8 cd-vols= no-issue=6 article-no= start-page=923 end-page=938 dt-received= dt-revised= dt-accepted= dt-pub-year=2006 dt-pub=20066 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Identification of glycosylation genes and glycosylated amino acids of flagellin in Pseudomonas syringae pv. tabaci en-subtitle= kn-subtitle= en-abstract= kn-abstract=A glycosylation island is a genetic region required for glycosylation. The glycosylation island of flagellin in Pseudomonas syringae pv. tabaci 6605 consists of three orfs: orf1, orf2 and orf3. Orf1 and orf2 encode putative glycosyltransferases, and their deletion mutants, Delta orf1 and Delta orf2, exhibit deficient flagellin glycosylation or produce partially glycosylated flagellin respectively. Digestion of glycosylated flagellin from wild-type bacteria and non-glycosylated flagellin from Delta orf1 mutant using aspartic N-peptidase and subsequent HPLC analysis revealed candidate glycosylated amino acids. By generation of site-directed Ser/Ala-substituted mutants, all glycosylated amino acid residues were identified at positions 143, 164, 176, 183, 193 and 201. Matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometry (MS) analysis revealed that each glycan was about 540 Da. While all glycosylation-defective mutants retained swimming ability, swarming ability was reduced in the Delta orf1, Delta orf2 and Ser/Ala-substituted mutants. All glycosylation mutants were also found to be impaired in the ability to adhere to a polystyrene surface and in the ability to cause disease in tobacco. Based on the predicted tertiary structure of flagellin, S176 and S183 are expected to be located on most external surface of the flagellum. Thus the effect of Ala-substitution of these serines is stronger than that of other serines. These results suggest that glycosylation of flagellin in P. syringae pv. tabaci 6605 is required for bacterial virulence. It is also possible that glycosylation of flagellin may mask elicitor function of flagellin molecule. en-copyright= kn-copyright= en-aut-name=TaguchiFumiko en-aut-sei=Taguchi en-aut-mei=Fumiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakeuchiKasumi en-aut-sei=Takeuchi en-aut-mei=Kasumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KatohEtsuko en-aut-sei=Katoh en-aut-mei=Etsuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MurataKatsuyoshi en-aut-sei=Murata en-aut-mei=Katsuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SuzukiTomoko en-aut-sei=Suzuki en-aut-mei=Tomoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MarutaniMizuri en-aut-sei=Marutani en-aut-mei=Mizuri kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KawasakiTakayuki en-aut-sei=Kawasaki en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=EguchiMinako en-aut-sei=Eguchi en-aut-mei=Minako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KatohShizue en-aut-sei=Katoh en-aut-mei=Shizue kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=kakuHanae en-aut-sei=kaku en-aut-mei=Hanae kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=YasudaChihiro en-aut-sei=Yasuda en-aut-mei=Chihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=InagakiYoshishige en-aut-sei=Inagaki en-aut-mei=Yoshishige kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=ToyodaKazuhiro en-aut-sei=Toyoda en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=ShiraishiTomonori en-aut-sei=Shiraishi en-aut-mei=Tomonori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=IchinoseYuki en-aut-sei=Ichinose en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= affil-num=1 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=2 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=3 en-affil= kn-affil=National Institute of Agrobiological Sciences affil-num=4 en-affil= kn-affil=National Institute of Agrobiological Sciences affil-num=5 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=6 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=7 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=8 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=9 en-affil= kn-affil=National Institute of Agrobiological Sciences affil-num=10 en-affil= kn-affil=National Institute of Agrobiological Sciences affil-num=11 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=12 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=13 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=14 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=15 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University en-keyword=Gram-Negative bacteria kn-keyword=Gram-Negative bacteria en-keyword=Posttranslational modification kn-keyword=Posttranslational modification en-keyword=Protein Glycosylation kn-keyword=Protein Glycosylation en-keyword=Perception kn-keyword=Perception en-keyword=Aeruginosa kn-keyword=Aeruginosa en-keyword=Cells kn-keyword=Cells en-keyword=Specificity kn-keyword=Specificity en-keyword=Expression kn-keyword=Expression en-keyword=Plasmids kn-keyword=Plasmids en-keyword=Pathways kn-keyword=Pathways END start-ver=1.4 cd-journal=joma no-vol=8 cd-vols= no-issue=4 article-no= start-page=365 end-page=373 dt-received= dt-revised= dt-accepted= dt-pub-year=2007 dt-pub=20070701 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Suppression of Cdc27B expression induces plant defence responses en-subtitle= kn-subtitle= en-abstract= kn-abstract=

Non-host resistance is the most general form of disease resistance in plants because it is effective against most phytopathogens. The importance of hypersensitive responses (HRs) in non-host resistance of Nicotiana species to the oomycete Phytophthora is clear. INF1 elicitin, an elicitor obtained from the late-blight pathogen Phytophthora infestans, is sufficient to induce a typical HR in Nicotiana species. The molecular mechanisms that underlie the non-host resistance component of plant defence responses have been investigated using differential-display polymerase chain reaction (PCR) in a model HR system between INF1 elicitin and tobacco BY-2 cells. Differential-display PCR has revealed that Cdc27B is down-regulated in tobacco BY- 2 cells after treatment with INF1 elicitin. Cdc27B is one of 13 essential components of the anaphase- promoting complex or cyclosome ( APC/ C)-type E3 ubiquitin ligase complex in yeast. This APC/C-type E3 ubiquitin ligase complex regulates G2-to-M phase transition of the cell cycle by proteolytic degradation. In this study, we investigated the roles of this gene, NbCdc27B, in plant defence responses using virus-induced gene silencing. Suppression of NbCdc27B in Nicotiana benthamiana plants induced defence responses and a gain of resistance to Colletotrichum lagenarium fungus. Elicitin-induced hypersensitive cell death (HCD) was inhibited mildly in plants silenced with tobacco rattle virus:: Cdc27B. Cdc27B could manage the signalling pathways of plant defence responses as a negative regulator without HCD.

en-copyright= kn-copyright= en-aut-name=KudoChikako en-aut-sei=Kudo en-aut-mei=Chikako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SuzukiTomoko en-aut-sei=Suzuki en-aut-mei=Tomoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FukuokaSumie en-aut-sei=Fukuoka en-aut-mei=Sumie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AsaiShuta en-aut-sei=Asai en-aut-mei=Shuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SuenagaHiroko en-aut-sei=Suenaga en-aut-mei=Hiroko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SasabeMichiko en-aut-sei=Sasabe en-aut-mei=Michiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TakanoYoshitaka en-aut-sei=Takano en-aut-mei=Yoshitaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OkunoTetsuro en-aut-sei=Okuno en-aut-mei=Tetsuro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ToyodaKazuhiro en-aut-sei=Toyoda en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=ShiraishiTomonori en-aut-sei=Shiraishi en-aut-mei=Tomonori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=IchinoseYuki en-aut-sei=Ichinose en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=InagakiYoshi-Shige en-aut-sei=Inagaki en-aut-mei=Yoshi-Shige kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil= kn-affil=Laboratory of Plant Pathology & Genetic Engineering, Faculty of Agriculture, Okayama University affil-num=2 en-affil= kn-affil=Laboratory of Plant Pathology & Genetic Engineering, Faculty of Agriculture, Okayama University affil-num=3 en-affil= kn-affil=Laboratory of Plant Pathology & Genetic Engineering, Faculty of Agriculture, Okayama University affil-num=4 en-affil= kn-affil=Laboratory of Plant Pathology & Genetic Engineering, Faculty of Agriculture, Okayama University affil-num=5 en-affil= kn-affil=Laboratory of Plant Pathology & Genetic Engineering, Faculty of Agriculture, Okayama University affil-num=6 en-affil= kn-affil=Laboratory of Plant Pathology & Genetic Engineering, Faculty of Agriculture, Okayama University affil-num=7 en-affil= kn-affil= affil-num=8 en-affil= kn-affil=Laboratory of Plant Pathology & Genetic Engineering, Faculty of Agriculture, Okayama University affil-num=9 en-affil= kn-affil=Laboratory of Plant Pathology & Genetic Engineering, Faculty of Agriculture, Okayama University affil-num=10 en-affil= kn-affil=Laboratory of Plant Pathology & Genetic Engineering, Faculty of Agriculture, Okayama University affil-num=11 en-affil= kn-affil=Laboratory of Plant Pathology & Genetic Engineering, Faculty of Agriculture, Okayama University affil-num=12 en-affil= kn-affil=Laboratory of Plant Pathology & Genetic Engineering, Faculty of Agriculture, Okayama University END start-ver=1.4 cd-journal=joma no-vol=86 cd-vols= no-issue=1 article-no= start-page=33 end-page=41 dt-received= dt-revised= dt-accepted= dt-pub-year=1997 dt-pub=199702 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=バナジン酸によるエンドウ培養細胞におけるフィトアレキシン生産の誘導 kn-title=Orthovanadate Induces Phytoalexin Production in Pea Suspension-Cultured Cells en-subtitle= kn-subtitle= en-abstract=バナジン酸は、エンドウ組織に褐紋病菌エリシターの処理で誘導される一連の防御応答を抑制することが報告されている。そこで、本研究ではバナジン酸のエンドウ培養細胞に対する影響を調べた。バナジン酸は培養細胞から分離した原形質膜画分のポリホスホイノシチド代謝系関連酵素やATPaseの活性を濃度依存的に阻害した。次に、褐紋病菌エリシター、塩化銅(非生物的エリシターの一種)、およびバナジン酸のin vivoでの影響を調べたところ、いずれの単独処理においてもエンドウ培養細胞のピサチン生産を誘導した。褐紋病菌エリシターはエンドウ培養細胞の細胞死(FDAの染色性喪失)を誘導しなかったが、塩化銅、バナジン酸は明らかな毒性を示した。以上の結果とこれまでの知見に基づいて、エンドウ培養細胞に対しては非生物的エリシターとして作用するバナジン酸の作用機構を考察した。 kn-abstract=We previously reported that the addition of orthovanadate suppressed the defense responses of plant differentiated tissues induced by a fungal elicitor.In this report,the effect of orthovanadate on the defense response of pea cultured cells was examined.The activities of ATPase and PI metabolism in plasma membrance fraction,which was prepared from suspension-cultured cells,were inhibited in vitro by orthovanadate as well as those in plasma membrances from pea epicotyl tissues. However,orthovanadate alone induced the accumulation of a phytoalexin, pisatin in suspention-clutured cells of pea in a manner similar to CuCl2.The viability of pea suspension-cultured cells was decreased by orthovanadate as well as by CuCl2.These results indicated that orthovanadate acts as an abiotic elicitor to pea suspension-cultured cell as observed in those of red bean,peanut and Perunia hybrida. en-copyright= kn-copyright= en-aut-name=KawaharaTomoharu en-aut-sei=Kawahara en-aut-mei=Tomoharu kn-aut-name=河原智治 kn-aut-sei=河原 kn-aut-mei=智治 aut-affil-num=1 ORCID= en-aut-name=ToyodaKazuhiro en-aut-sei=Toyoda en-aut-mei=Kazuhiro kn-aut-name=豊田和弘 kn-aut-sei=豊田 kn-aut-mei=和弘 aut-affil-num=2 ORCID= en-aut-name=KibaAkinori en-aut-sei=Kiba en-aut-mei=Akinori kn-aut-name=木場章範 kn-aut-sei=木場 kn-aut-mei=章範 aut-affil-num=3 ORCID= en-aut-name=IchinoseYuki en-aut-sei=Ichinose en-aut-mei=Yuki kn-aut-name=一瀬勇規 kn-aut-sei=一瀬 kn-aut-mei=勇規 aut-affil-num=4 ORCID= en-aut-name=YamadaTetsuji en-aut-sei=Yamada en-aut-mei=Tetsuji kn-aut-name=山田哲治 kn-aut-sei=山田 kn-aut-mei=哲治 aut-affil-num=5 ORCID= en-aut-name=ShiraishiTomonori en-aut-sei=Shiraishi en-aut-mei=Tomonori kn-aut-name=白石友紀 kn-aut-sei=白石 kn-aut-mei=友紀 aut-affil-num=6 ORCID= affil-num=1 en-affil= kn-affil=Agricultural Science Laboratory, Agricultural Products, Du Pont K. K. affil-num=2 en-affil= kn-affil=Iwate Biotechnology Research Center affil-num=3 en-affil= kn-affil=岡山大学 affil-num=4 en-affil= kn-affil=岡山大学 affil-num=5 en-affil= kn-affil=岡山大学 affil-num=6 en-affil= kn-affil=岡山大学 en-keyword=defense response kn-keyword=defense response en-keyword=elicitor kn-keyword=elicitor en-keyword=Pisum sativum kn-keyword=Pisum sativum en-keyword=suspension-cultured cells kn-keyword=suspension-cultured cells en-keyword=orthovanadate kn-keyword=orthovanadate END start-ver=1.4 cd-journal=joma no-vol=87 cd-vols= no-issue=1 article-no= start-page=109 end-page=116 dt-received= dt-revised= dt-accepted= dt-pub-year=1998 dt-pub=199802 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=病原菌シグナルによるエンドウ原形質膜におけるホスファチジルイノシトールリン脂質のリン酸化とリゾリン脂質生成の制御 kn-title=Phosphorylation of Phosphatidylinositols and Production of Lysophospholipid in Pea Plasma Membrane Are Coordinately Regulated by Elicitor and Suppressor from Mycosphaerella pinodes    en-subtitle= kn-subtitle= en-abstract=エンドウの上胚軸組織により分離した原形質膜画分を褐紋病菌の生産するエリシターで処理すると、ホスファチジルイノシトールリン脂質の急速なリン酸化とリゾリン脂質の生成が誘導されたが、同菌より調製したサプレッサーの共存下では双方とも著しく阻害された。本結果は、ポリホスホイノシチド代謝系と同調的に作動するホリパーゼA活性化が存在すること、さらに、原形質膜における病原菌シグナルの受容・応答には複数の資質代謝系が介在する可能性を示唆している。一方、ホスホリパーゼAの活性化の役割を調べる目的で、本酵素によって原形質膜から生成されると考えられる脂肪酸(リノール酸ならびにリノレン酸)をエンドウ葉に処理したところ、エリシターの非存在下においてもファイトアレキシンであるピサチンの生成が誘導されることが示された。以上から、ポリホスホイノシチド代謝系と同調的に働くホスホリパーゼAがエリシターシグナルの初期伝達に深く関連しているものと考えられた。 kn-abstract=Effects of elicitor and suppressor from a pea pathogen, Mycosphaerella pinodes, on Pl etabolism in pea plasma membrane were examined in vitro. The elicitor induced rapid phosphorylation of phosphatidylinositols as well as production of lysophospholipid in plasma membranes, but these responses were severely inhibited by the suppressor. These results indicate that a membrane-associated phospholipase A is regulated coordinately by fungal signals, together with Pl metabolism, and that it may participate in signal transduction pathways leading to defense responses. To evaluate a possible rote of phospholipase A activation in induction of a pea defense response, the effect of free fatty acid on induction of a phytoalexin accumulation was also examined. When pea leaves were treated with linoleic- or linolenic acid, most commonly released in plant cells by phospholipase A, the accumulation of pisatin was induced even in the absence of the elicitor. It is, therefore, conceivable that free fatty acid(s) released from plasma membrane is also implicated in the early stage of elicitor-signal transduction in pea. en-copyright= kn-copyright= en-aut-name=ToyodaKazuhiro en-aut-sei=Toyoda en-aut-mei=Kazuhiro kn-aut-name=豊田和弘 kn-aut-sei=豊田 kn-aut-mei=和弘 aut-affil-num=1 ORCID= en-aut-name=KoyamaMasashi en-aut-sei=Koyama en-aut-mei=Masashi kn-aut-name=小山昌史 kn-aut-sei=小山 kn-aut-mei=昌史 aut-affil-num=2 ORCID= en-aut-name=MizukoshiRumi en-aut-sei=Mizukoshi en-aut-mei=Rumi kn-aut-name=水越留美 kn-aut-sei=水越 kn-aut-mei=留美 aut-affil-num=3 ORCID= en-aut-name=IchinoseYuki en-aut-sei=Ichinose en-aut-mei=Yuki kn-aut-name=一瀬勇規 kn-aut-sei=一瀬 kn-aut-mei=勇規 aut-affil-num=4 ORCID= en-aut-name=YamadaTetsuji en-aut-sei=Yamada en-aut-mei=Tetsuji kn-aut-name=山田哲治 kn-aut-sei=山田 kn-aut-mei=哲治 aut-affil-num=5 ORCID= en-aut-name=ShiraishiTomonori en-aut-sei=Shiraishi en-aut-mei=Tomonori kn-aut-name=白石友紀 kn-aut-sei=白石 kn-aut-mei=友紀 aut-affil-num=6 ORCID= affil-num=1 en-affil= kn-affil=岡山大学 affil-num=2 en-affil= kn-affil=岡山大学 affil-num=3 en-affil= kn-affil=岡山大学 affil-num=4 en-affil= kn-affil=岡山大学 affil-num=5 en-affil= kn-affil=岡山大学 affil-num=6 en-affil= kn-affil=岡山大学 en-keyword=elicitor kn-keyword=elicitor en-keyword=pea(Pisum sativum L.) kn-keyword=pea(Pisum sativum L.) en-keyword=phospholipase A kn-keyword=phospholipase A en-keyword=polyphosphoinositide metabolism(Pl metabolism) kn-keyword=polyphosphoinositide metabolism(Pl metabolism) en-keyword=suppressor kn-keyword=suppressor END start-ver=1.4 cd-journal=joma no-vol=87 cd-vols= no-issue=1 article-no= start-page=99 end-page=107 dt-received= dt-revised= dt-accepted= dt-pub-year=1998 dt-pub=199802 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=共生真菌アクレモニウムエンドファイトの形質転換 kn-title=Transformation of Mutualistic Fungal Acremonium Endophyte en-subtitle= kn-subtitle= en-abstract=アクレモニウムエンドファイトの形質転換の条件を検討した。アクレモニウムエンドファイトからプロトプラストを調製し、PEG4000とエレクトロポレーションを用いて形質転換を試みた。その結果、PEGで形質転換すると、エレクトロポレーションによる場合よりも多くの形質転換体が得られた。PCR解析によってiaaM遺伝子のゲノムへの導入を確認したところ、形質転換体のPCR産物はiaaM遺伝子のサイズに相当する約1.7kbのバンドを持っていた。一方、iaaM遺伝子をプローブとしたサザンブロット解析においては、形質転換体と非形質転換体の間にはハイブリダイズした断片数に違いがあることが明らかとなった。以上の結果は、アクレモニウムエンドファイトの形質転換にはPEG法が有効であること、アクレモニウムエンドファイトのゲノム中にはiaaM遺伝子様配列の反復コピーが存在することを示唆している。 kn-abstract=Conditions have been developed for transforming protoplasts of the Acremonium endophyte by PEG 4000 and electroporation. Transformation by PEG exhibited a higher number of transformants than by electroporation. lntegration of iaaM gene into the genome was examined by PCR and Southern blot hybridization analysis. PCR product showed that transformants banded at around 1.7 kb corresponding to the size of iaaM gene. Hybridization of the digests of genomic DNA with iaaM gene as DNA probe showed that the number of hybridized band signals was different between transformant and non-transformant. These results might indicate that PEG is an effective method for the transformation of Acremonium endophyte and that there are repeated copies of the iaaM homologous sequences in the genome of Acremonium. en-copyright= kn-copyright= en-aut-name=YunusAhamad en-aut-sei=Yunus en-aut-mei=Ahamad kn-aut-name=ユーナスアハマド kn-aut-sei=ユーナス kn-aut-mei=アハマド aut-affil-num=1 ORCID= en-aut-name=IchinoseYuki en-aut-sei=Ichinose en-aut-mei=Yuki kn-aut-name=一瀬勇規 kn-aut-sei=一瀬 kn-aut-mei=勇規 aut-affil-num=2 ORCID= en-aut-name=ShiraishiTomonori en-aut-sei=Shiraishi en-aut-mei=Tomonori kn-aut-name=白石友紀 kn-aut-sei=白石 kn-aut-mei=友紀 aut-affil-num=3 ORCID= en-aut-name=YamadaTetsuji en-aut-sei=Yamada en-aut-mei=Tetsuji kn-aut-name=山田哲治 kn-aut-sei=山田 kn-aut-mei=哲治 aut-affil-num=4 ORCID= affil-num=1 en-affil= kn-affil=岡山大学 affil-num=2 en-affil= kn-affil=岡山大学 affil-num=3 en-affil= kn-affil=岡山大学 affil-num=4 en-affil= kn-affil=岡山大学 en-keyword=Acremonium sp kn-keyword=Acremonium sp en-keyword=endophyte kn-keyword=endophyte en-keyword=tranformation kn-keyword=tranformation en-keyword=iaaM gene kn-keyword=iaaM gene en-keyword=hgh gene kn-keyword=hgh gene END start-ver=1.4 cd-journal=joma no-vol=87 cd-vols= no-issue=1 article-no= start-page=91 end-page=97 dt-received= dt-revised= dt-accepted= dt-pub-year=1998 dt-pub=199802 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=エンドウカルコン合成酵素遺伝子PSCHS2のエリシターによる転写活性化に関与するシス制御配列とトランス因子 kn-title=Cis-Regulatory Elements and Trans-acting Factors Involved in the Activation of a Member of Elicitor-Responsive Pea Chalcone Synthase Gene Family, PSCHS2 en-subtitle= kn-subtitle= en-abstract=エンドウのカルコン合成酵素遺伝子,PSCHS2のエリシターによる転写活性化機構を解明するために、PSCHS2プロモーターの転写制御シスエレメントとトランスに働く核内DNA結合タンパク質について解析した。PSCHS2の転写開始点より-471までの配列を有するプロモーターは、高いべーサルな転写活性を示すと共にエリシター処理により転写活性が増高した。また、エリシター処理したエンドウ上胚軸から調製された核抽出物はPSCHS2の+83から-484までの異なるDNA断片とゲルシフトアッセイ移動度の遅い複合体(LMC)を形成した。更に、LMCの形成は核抽出物をアルカリフォスファターゼで処理することにより阻害されたことより、何らかの核タンパク質のリン酸化がLMC形成を促していると考えられた。以上の結果は、PSCHS2のプロモーター上にある複数の転写制御シスエレメントに対する正の転写活性化因子の結合はエリシター処理によって増加し、その結合によって転写が活性化することを示唆している。 kn-abstract=To elucidate the elicitor-mediated transcriptional activation in one of the chalcone synthase genes, PSCHS2 in pea, we investigated the putative cis-regulatory elements in the promoter sequence and trans-acting DNA binding proteins. The promoter up to -471 from the transcription start site of PSCHS2 gave considerable level of basal transcriptional activity. Nuclear extract from elicitortreated pea epicotyls formed DNA-protein complexes with three independent DNA fragments spanning from +83 to -484 of PSCHS2 with low mobility (LMC,low mobility complex) in the gel mobility shift assay. Since the LMC formation was blocked by the treatment of nuclear extract with alkaline phosphatase, the phosphorylation of some nuclear factor(s) assists LMC formation. These results indicate that the bindings of the putative positive nuclear factors to the multiple cisregulatory elements in PSCHS2 promoter region were enhanced by elicitortreatment that might result in transcriptional activation. en-copyright= kn-copyright= en-aut-name=IchinoseYuki en-aut-sei=Ichinose en-aut-mei=Yuki kn-aut-name=一瀬勇規 kn-aut-sei=一瀬 kn-aut-mei=勇規 aut-affil-num=1 ORCID= en-aut-name=ItoMasayuki en-aut-sei=Ito en-aut-mei=Masayuki kn-aut-name=伊藤正幸 kn-aut-sei=伊藤 kn-aut-mei=正幸 aut-affil-num=2 ORCID= en-aut-name=SekiHikaru en-aut-sei=Seki en-aut-mei=Hikaru kn-aut-name=関光 kn-aut-sei=関 kn-aut-mei=光 aut-affil-num=3 ORCID= en-aut-name=ToyodaKazuhiro en-aut-sei=Toyoda en-aut-mei=Kazuhiro kn-aut-name=豊田和弘 kn-aut-sei=豊田 kn-aut-mei=和弘 aut-affil-num=4 ORCID= en-aut-name=ShiraishiTomonori en-aut-sei=Shiraishi en-aut-mei=Tomonori kn-aut-name=白石友紀 kn-aut-sei=白石 kn-aut-mei=友紀 aut-affil-num=5 ORCID= en-aut-name=YamadaTetsuji en-aut-sei=Yamada en-aut-mei=Tetsuji kn-aut-name=山田哲治 kn-aut-sei=山田 kn-aut-mei=哲治 aut-affil-num=6 ORCID= affil-num=1 en-affil= kn-affil=岡山大学 affil-num=2 en-affil= kn-affil=岡山大学 affil-num=3 en-affil= kn-affil=岡山大学 affil-num=4 en-affil= kn-affil=岡山大学 affil-num=5 en-affil= kn-affil=岡山大学 affil-num=6 en-affil= kn-affil=岡山大学 en-keyword=chalcone synthase kn-keyword=chalcone synthase en-keyword=cis-acting elements kn-keyword=cis-acting elements en-keyword=DNA binding proteins kn-keyword=DNA binding proteins en-keyword=elicitor kn-keyword=elicitor en-keyword=promoter activity kn-keyword=promoter activity END start-ver=1.4 cd-journal=joma no-vol=88 cd-vols= no-issue=1 article-no= start-page=31 end-page=38 dt-received= dt-revised= dt-accepted= dt-pub-year=1999 dt-pub=199902 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=エンドウ原形質膜におけるATPアーゼとホスファチジルイノシトールリン資質リン酸化酵素の共精製 kn-title=Co-purification of Plasma Membrane ATPase and Phosphatidylinositol Kinase from Pea Plasma Membranes en-subtitle= kn-subtitle= en-abstract=エンドウの上胚軸組織から分離した原形質膜画分におけるATPアーゼとホスファチジルイノシトールリン脂質リン酸化酵素との相互作用を解析する目的で、双方の原形質膜画分からの可溶化とそれらの部分精製を試みた。原形質膜のTritonX−100可溶化画分をグリセロール連続密度勾配遠心分画に供し、得られた活性画分をさらに分子ふるいカラムクロマトグラフィーによって分離した。この結果、ATPアーゼとホスファチジルイイノシトールリン脂質リン酸化酵素は共精製され、非変性条件下では双方の活性を分けることができなかった。 kn-abstract=The plasma membrance ATPase was partially purified by a linear glycerol density gradient centrifugation of the detergent-solubilized plasma membrance poteins and subsequent separation by a size-exclusion column chromatogrphy. A purified ATPase preparation is shown to contain a 97.6kDa protein that was cross-reacted with an antibody raised against mung bean H+-ATPase. The preparation also exhibited the phosphorylation of exogenous phosphatidylionsitol(PI) when supplized with [γ-32P]ATP. These results indicate that one form plasma membrance ATPase is co-purified with PI kinase. en-copyright= kn-copyright= en-aut-name=ToyodaKazuhiro en-aut-sei=Toyoda en-aut-mei=Kazuhiro kn-aut-name=豊田和弘 kn-aut-sei=豊田 kn-aut-mei=和弘 aut-affil-num=1 ORCID= en-aut-name=IchinoseYuki en-aut-sei=Ichinose en-aut-mei=Yuki kn-aut-name=一瀬勇規 kn-aut-sei=一瀬 kn-aut-mei=勇規 aut-affil-num=2 ORCID= en-aut-name=YamadaTetsuji en-aut-sei=Yamada en-aut-mei=Tetsuji kn-aut-name=山田哲治 kn-aut-sei=山田 kn-aut-mei=哲治 aut-affil-num=3 ORCID= en-aut-name=ShiraishiTomonori en-aut-sei=Shiraishi en-aut-mei=Tomonori kn-aut-name=白石友紀 kn-aut-sei=白石 kn-aut-mei=友紀 aut-affil-num=4 ORCID= affil-num=1 en-affil= kn-affil=岡山大学 affil-num=2 en-affil= kn-affil=岡山大学 affil-num=3 en-affil= kn-affil=岡山大学 affil-num=4 en-affil= kn-affil=岡山大学 en-keyword=Lipid kinase kn-keyword=Lipid kinase en-keyword=Mycosphaerella kn-keyword=Mycosphaerella en-keyword=plasma membrance ATPase kn-keyword=plasma membrance ATPase en-keyword=pea(Pisum sativum L.) kn-keyword=pea(Pisum sativum L.) en-keyword=suppressor kn-keyword=suppressor END start-ver=1.4 cd-journal=joma no-vol=88 cd-vols= no-issue=1 article-no= start-page=25 end-page=30 dt-received= dt-revised= dt-accepted= dt-pub-year=1999 dt-pub=199902 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=エンドウの推定ZnフィンガーDNA結合性タンパク質のcDNAクローニング kn-title=Molecular Cloning of a cDNA Encoding a Putative DNA-Binding Zinc-Finger Protein in Pea en-subtitle= kn-subtitle= en-abstract=エリシターを処理したエンドウの上胚軸からcDNAライブラリーを作成し、水処理上胚軸をコントロールに differential screening を行い、エリシター応答性cDNAの候補として90個のクローンを単離した。そららのクローンの1つE31は1,716bpのインサートを有し、ミヤコグサ、ダイズでcDNAがクローニングされているLjpzf、Gmpzfのエンドウにおけるホモローグをコードしていると考えられ、その推定翻訳産物をPspzfと命名した。E31は、Ljpzfの推定アミノ酸配列の82アミノ酸目からカルボキシル末端側をコードしていると考えられた。LjpzfやPspzfの推定アミノ酸配列中には核移行シグナルHKRKが存在していたこと、カルボキシル末端側にはCys3His2Cys3もモチーフとするRing H2 fingerドメインが存在していたことより、LjpzfやPspzfは、核内に局在するDNA結合性のZn fingerタンパク質の1種として遺伝子発現の制御に機能している可能性が示唆された。 kn-abstract=We constructed cDNA library from pea epicotyls treated with fungal elicitor for 5hrs, and performed differential screening using the individual 32P-cDNA probe derived from poly(A)+ RNA prepared from elicitor- and water-treated epicotyls. As a result of the screening, we have isolated from elicitor- and water-treated epicotyls. As a results of the screening, we have isolated about 90 cDNA clones as candidates for elicitor-inducible genes, and their nucleotide sequences have been partially determined. One of these clones, E31 was a pea homolog of the putative zinc-finger proteins, Ljpzf in Lotus japonicus and Gmpz in soybean. E31 possesses 1,726bp insert, and encodes an open reading frame corresponding to position 82 amino acids from N-terminus to the C-terminal end in Ljpzf. The protein product of E31 was designated as Pspzf. Pspzf also possesses nuclear localization signal(NLS), HKRK, and Cys3His2Cys3(RIngH2) motif at the same position to LjpZF and putative C-terminal end of the deduced amino acid sequences, respectively. Since zinc-finger motif is one of the well-known DNA-binding domains, Ljpzf and Pspzf might be able to bins to a particular DNA sequence and regulate transcriptional activity in plants. en-copyright= kn-copyright= en-aut-name=IchinoseYuki en-aut-sei=Ichinose en-aut-mei=Yuki kn-aut-name=一瀬勇規 kn-aut-sei=一瀬 kn-aut-mei=勇規 aut-affil-num=1 ORCID= en-aut-name=EndohAi en-aut-sei=Endoh en-aut-mei=Ai kn-aut-name=遠藤愛 kn-aut-sei=遠藤 kn-aut-mei=愛 aut-affil-num=2 ORCID= en-aut-name=SanematsuShiroh en-aut-sei=Sanematsu en-aut-mei=Shiroh kn-aut-name=実松史郎 kn-aut-sei=実松 kn-aut-mei=史郎 aut-affil-num=3 ORCID= en-aut-name=ToyodaKazuhiro en-aut-sei=Toyoda en-aut-mei=Kazuhiro kn-aut-name=豊田和弘 kn-aut-sei=豊田 kn-aut-mei=和弘 aut-affil-num=4 ORCID= en-aut-name=ShiraishiTomonori en-aut-sei=Shiraishi en-aut-mei=Tomonori kn-aut-name=白石友紀 kn-aut-sei=白石 kn-aut-mei=友紀 aut-affil-num=5 ORCID= en-aut-name=YamadaTetsuji en-aut-sei=Yamada en-aut-mei=Tetsuji kn-aut-name=山田哲治 kn-aut-sei=山田 kn-aut-mei=哲治 aut-affil-num=6 ORCID= affil-num=1 en-affil= kn-affil=岡山大学 affil-num=2 en-affil= kn-affil=岡山大学 affil-num=3 en-affil= kn-affil=岡山大学 affil-num=4 en-affil= kn-affil=岡山大学 affil-num=5 en-affil= kn-affil=岡山大学 affil-num=6 en-affil= kn-affil=岡山大学 en-keyword=DNA-binding protein kn-keyword=DNA-binding protein en-keyword=Elicitor kn-keyword=Elicitor en-keyword=Ring H2 finger protein kn-keyword=Ring H2 finger protein en-keyword=Transcription factors kn-keyword=Transcription factors en-keyword=Zinc-finger protein kn-keyword=Zinc-finger protein END start-ver=1.4 cd-journal=joma no-vol=92 cd-vols= no-issue=1 article-no= start-page=21 end-page=26 dt-received= dt-revised= dt-accepted= dt-pub-year=2003 dt-pub=200302 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=エンドウのエリシター誘導性遺伝子発現におけるAAAGモチーフとPsDof1タンパク質の関与 kn-title=Possible Involvement of AAAG Motif and PsDof1 in Elicitor-Induced Gene Expression in Pea en-subtitle= kn-subtitle= en-abstract=エリシターを処理したエンドウ上胚軸由来のRNAから作成されたcDNAライブラリーからエリシター処理により発現が増高する遺伝子候補のcDNAとしてPsDof1が単離された.大腸菌で生産されたGST-PsDof1融合タンパク質はAAAG配列をコアとするDNAに結合することが明らかにされている.本論文ではGST-PsDof1がエリシター応答性遺伝子の一つ,PsCHS1のプロモーター上のAAAGまたはCTTT配列を有する断片に特異的に結合することを明らかにした.更にAAAG配列のエリシター応答性シスエレメントとしての機能を解析するため,AAAG配列を4回繰り返したユニットをCaMV35Sの最小プロモーターとCATレポーター遺伝子に連結したキメラ遺伝子を構築し,エンドウプロトプラストにエレクトロポレーション法により導入した.CAT活性を指にプロモーター活性を調べたところ,AAAG配列を有するプロモーターは,エリシター処理により活性化されることが明らかとなった.これらの結果はPsDof1がエリシター応答性防御遺伝子のプロモーター上のAAAG配列に結合し,転写を活性化させる可能性を示唆している. kn-abstract=Recently, we, isolated cDNA clone, PsDof1, from clicitor-treated pea cDNA library. The putative gene product, a PsDof1, encodes DNA binding protein that specifically binds the DNA fragment containing AAAG core sequence. In this paper we report that GST-PsDof1 fusion protein specifically binds to the promoter region containing AAAG core sequence(s) of PsCHS1, one of the elicitor-inducible genes encoding chalcone synthase (CHS). Furthermore the addition of DNA fragment containing AAAG motif to the 35S minimal promoter provided the elicitor-responsibility in transient transfection assay using pea protoplasts. These results suggest that PsDof1 might be involved in defense responses by acitivating the transcription by a binding to AAAG core sequence in the promoter of the defense-related genes in pea. en-copyright= kn-copyright= en-aut-name=SekiHikaru en-aut-sei=Seki en-aut-mei=Hikaru kn-aut-name=關光 kn-aut-sei=關 kn-aut-mei=光 aut-affil-num=1 ORCID= en-aut-name=MarutaniMizuri en-aut-sei=Marutani en-aut-mei=Mizuri kn-aut-name=丸谷瑞理 kn-aut-sei=丸谷 kn-aut-mei=瑞理 aut-affil-num=2 ORCID= en-aut-name=InagakiYoshishige en-aut-sei=Inagaki en-aut-mei=Yoshishige kn-aut-name=稲垣善茂 kn-aut-sei=稲垣 kn-aut-mei=善茂 aut-affil-num=3 ORCID= en-aut-name=ToyodaKazuhiro en-aut-sei=Toyoda en-aut-mei=Kazuhiro kn-aut-name=豊田和弘 kn-aut-sei=豊田 kn-aut-mei=和弘 aut-affil-num=4 ORCID= en-aut-name=ShiraishiTomonori en-aut-sei=Shiraishi en-aut-mei=Tomonori kn-aut-name=白石友紀 kn-aut-sei=白石 kn-aut-mei=友紀 aut-affil-num=5 ORCID= en-aut-name=IchinoseYuki en-aut-sei=Ichinose en-aut-mei=Yuki kn-aut-name=一瀬勇規 kn-aut-sei=一瀬 kn-aut-mei=勇規 aut-affil-num=6 ORCID= affil-num=1 en-affil= kn-affil=岡山大学 affil-num=2 en-affil= kn-affil=岡山大学 affil-num=3 en-affil= kn-affil=岡山大学 affil-num=4 en-affil= kn-affil=岡山大学 affil-num=5 en-affil= kn-affil=岡山大学 affil-num=6 en-affil= kn-affil=岡山大学 en-keyword=cis-element kn-keyword=cis-element en-keyword=DNA binding proteins kn-keyword=DNA binding proteins en-keyword=Dof protein kn-keyword=Dof protein en-keyword=Elicitor kn-keyword=Elicitor END start-ver=1.4 cd-journal=joma no-vol=80 cd-vols= no-issue=1 article-no= start-page=51 end-page=60 dt-received= dt-revised= dt-accepted= dt-pub-year=1992 dt-pub=1992 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=エンドウプロトプラスト細胞における植物プロモータの発現 kn-title=A Reporter Gene Expression Under the Control of a Pea Phenylalanine Ammonia Lyase-gene Promoter en-subtitle= kn-subtitle= en-abstract= kn-abstract=High yields of viable pea protoplasts were produced from suspension cultured cells derived from calli formed from embryogenic tissues or leaves and the conditions for the optimum expression of chloramphenicol acetyltransferase (CAT) fused to the phenylalanine ammonia-lyase gene of Pisum sativum (pPAL1-15) were investigated by transient assay after electroporation. A fungal elicitor isolated from a pea pathogen, Mycosphaerella pinodes, and the reduced from of glutathione induced the expression of PAL promoter but orthovanadate, a plasma membrane ATPase inhibitor, considerably suppressed the gene expression. Rice protoplasts were also prepared from the suspension cultured cells derived from embryonic tissues, and the effects of elicitors on the expression of CAT in pPAL1-15-electroporated rice protoplasts were examined. No distinctive induction of CAT activity was observed by the treatment of rice protoplasts with a chitosan oligomer elicitor. en-copyright= kn-copyright= en-aut-name=YamadaTetsuji en-aut-sei=Yamada en-aut-mei=Tetsuji kn-aut-name=山田哲治 kn-aut-sei=山田 kn-aut-mei=哲治 aut-affil-num=1 ORCID= en-aut-name=HashimotoTadaaki en-aut-sei=Hashimoto en-aut-mei=Tadaaki kn-aut-name=橋本忠明 kn-aut-sei=橋本 kn-aut-mei=忠明 aut-affil-num=2 ORCID= en-aut-name=SriprasertsakPermpong en-aut-sei=Sriprasertsak en-aut-mei=Permpong kn-aut-name=スリプラサートサックペルンポン kn-aut-sei=スリプラサートサック kn-aut-mei=ペルンポン aut-affil-num=3 ORCID= en-aut-name=KatoHisaharu en-aut-sei=Kato en-aut-mei=Hisaharu kn-aut-name=加藤久晴 kn-aut-sei=加藤 kn-aut-mei=久晴 aut-affil-num=4 ORCID= en-aut-name=IchinoseYuki en-aut-sei=Ichinose en-aut-mei=Yuki kn-aut-name=一瀬勇規 kn-aut-sei=一瀬 kn-aut-mei=勇規 aut-affil-num=5 ORCID= en-aut-name=ShiraishiTomonori en-aut-sei=Shiraishi en-aut-mei=Tomonori kn-aut-name=白石友紀 kn-aut-sei=白石 kn-aut-mei=友紀 aut-affil-num=6 ORCID= en-aut-name=OkuHachiro en-aut-sei=Oku en-aut-mei=Hachiro kn-aut-name=奥八郎 kn-aut-sei=奥 kn-aut-mei=八郎 aut-affil-num=7 ORCID= affil-num=1 en-affil= kn-affil=岡山大学 affil-num=2 en-affil= kn-affil=岡山大学 affil-num=3 en-affil= kn-affil=岡山大学 affil-num=4 en-affil= kn-affil=岡山大学 affil-num=5 en-affil= kn-affil=岡山大学 affil-num=6 en-affil= kn-affil=岡山大学 affil-num=7 en-affil= kn-affil=岡山大学 END