start-ver=1.4 cd-journal=joma no-vol=69 cd-vols= no-issue=3 article-no= start-page=129 end-page=136 dt-received= dt-revised= dt-accepted= dt-pub-year=2015 dt-pub=201506 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Epoprostenol Therapy for Pulmonary Arterial Hypertension en-subtitle= kn-subtitle= en-abstract= kn-abstract=Pulmonary arterial hypertension (PAH) is characterized by elevation of pulmonary artery pressure caused by pulmonary vasoconstriction and vascular remodeling, which leads to right heart failure and death. Epoprostenol (prostaglandin I2) has a potent short-acting vasodilator property, and intravenous continuous epoprostenol is therefore used for treatment of PAH. Here we review evidence for the usefulness of intravenous continuous epoprostenol therapy in patients with PAH. Epoprostenol therapy is effective in idiopathic PAH patients and in patients with PAH associated with connective tissue disease, portal hypertension or congenital heart diseases, but it is not effective in patients with pulmonary veno-occlusive disease or pulmonary capillary hemangiomatosis. High-dose epoprostenol therapy markedly improved hemodynamics in some patients with PAH, possibly due to reverse remodeling of pulmonary arteries. This therapy has several side effects and complications such as headache, hypotension and catheter-related infections. Intravenous continuous epoprostenol is an effective treatment, but there are still some problems to be resolved. en-copyright= kn-copyright= en-aut-name=AkagiSatoshi en-aut-sei=Akagi en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakamuraKazufumi en-aut-sei=Nakamura en-aut-mei=Kazufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MatsubaraHiromi en-aut-sei=Matsubara en-aut-mei=Hiromi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OgawaAiko en-aut-sei=Ogawa en-aut-mei=Aiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SarashinaToshihiro en-aut-sei=Sarashina en-aut-mei=Toshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=EjiriKentaro en-aut-sei=Ejiri en-aut-mei=Kentaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil= kn-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine affil-num=2 en-affil= kn-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine affil-num=3 en-affil= kn-affil=Department of Clinical Science, National Hospital Organization Okayama Medical Center affil-num=4 en-affil= kn-affil=Department of Clinical Science, National Hospital Organization Okayama Medical Center affil-num=5 en-affil= kn-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine affil-num=6 en-affil= kn-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine affil-num=7 en-affil= kn-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine en-keyword=pulmonary arterial hypertension kn-keyword=pulmonary arterial hypertension en-keyword=epoprostenol kn-keyword=epoprostenol en-keyword=high-dose kn-keyword=high-dose en-keyword=complications kn-keyword=complications en-keyword=side effects kn-keyword=side effects END start-ver=1.4 cd-journal=joma no-vol=70 cd-vols= no-issue=5 article-no= start-page=397 end-page=400 dt-received= dt-revised= dt-accepted= dt-pub-year=2016 dt-pub=201610 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Feasibility of Repairing Defects Followed by Treatment with Pulmonary Hypertension-specific Drugs (Repair and Treat) in Patients with Pulmonary Hypertension Associated with Atrial Septal Defect: Study Protocol for Interventional Trial en-subtitle= kn-subtitle= en-abstract= kn-abstract=A treatment strategy for patients with pulmonary hypertension (PH) and atrial septal defect (ASD) remains unclear. This study was designed to evaluate the effects of initial repair of ASD followed by treatment with PH-specific drugs in patients with PH and ASD. Eligible patients receive transcatheter ASD closure followed by treatment with bosentan and sildenafil. Right heart catheterization is performed at baseline and at 12, 24 and 48 weeks. The primary endpoint is change in pulmonary artery pressure and pulmonary vascular resistance from baseline to follow-up. This study should provide valuable information to establish a therapeutic strategy for PH and ASD. en-copyright= kn-copyright= en-aut-name=AkagiSatoshi en-aut-sei=Akagi en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakamuraKazufumi en-aut-sei=Nakamura en-aut-mei=Kazufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AkagiTeiji en-aut-sei=Akagi en-aut-mei=Teiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NakagawaKoji en-aut-sei=Nakagawa en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakayaYoichi en-aut-sei=Takaya en-aut-mei=Yoichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SarashinaToshihiro en-aut-sei=Sarashina en-aut-mei=Toshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=EjiriKentaro en-aut-sei=Ejiri en-aut-mei=Kentaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= affil-num=2 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= affil-num=3 en-affil=Cardiac Intensive Care Unit, Okayama University Hospital kn-affil= affil-num=4 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= affil-num=5 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= affil-num=6 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= affil-num=7 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= affil-num=8 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= en-keyword=pulmonary hypertension kn-keyword=pulmonary hypertension en-keyword=atrial septal defect kn-keyword=atrial septal defect en-keyword=repair and treat kn-keyword=repair and treat en-keyword=transcatheter closure kn-keyword=transcatheter closure END start-ver=1.4 cd-journal=joma no-vol=75 cd-vols= no-issue=1 article-no= start-page=45 end-page=53 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=202102 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Possible Protective Effect of Remote Ischemic Preconditioning on Acute Kidney Injury Following Elective Percutaneous Coronary Intervention: Secondary Analysis of a Multicenter, Randomized Study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Remote ischemic preconditioning (RIPC) is a promising strategy for protecting against ischemic reperfusion injury. This study is a secondary analysis of a randomized study that aimed to evaluate the effect of RIPC on the early increase in serum creatinine (SCr) following percutaneous coronary intervention (PCI), which is associ-ated with contrast-induced acute kidney injury. Patients with stable angina undergoing elective PCI were assigned to control, RIPC, and continuous infusion of nicorandil (nicorandil) groups. The endpoint of this study was the incidence of the early increase in SCr, a predictor of contrast-induced acute kidney injury, which was defined as either a > 20% or absolute increase by 0.3 mg/dl of SCr levels after 24 h of PCI. This study included 220 patients for whom a dataset of SCr values was available. The incidence of the early increase in SCr was significantly lower in the RIPC than in the control (1.3% vs 10.8%, p = 0.03) group, but was not significantly different between the nicorandil and control groups. In multivariate analysis, RIPC remained a significant fac-tor associated with a reduction in the incidence of early increase in SCr. RIPC reduces the incidence of early increase in SCr in patients with stable angina following elective PCI. en-copyright= kn-copyright= en-aut-name=OtsukaHiroaki en-aut-sei=Otsuka en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MiyoshiToru en-aut-sei=Miyoshi en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=EjiriKentaro en-aut-sei=Ejiri en-aut-mei=Kentaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KohnoKunihisa en-aut-sei=Kohno en-aut-mei=Kunihisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NakahamaMakoto en-aut-sei=Nakahama en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=DoiMasayuki en-aut-sei=Doi en-aut-mei=Masayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MunemasaMitsuru en-aut-sei=Munemasa en-aut-mei=Mitsuru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MurakamiMasaaki en-aut-sei=Murakami en-aut-mei=Masaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NakamuraKazufumi en-aut-sei=Nakamura en-aut-mei=Kazufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Density and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Density and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Density and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Density and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Cardiology, Fukuyama City Hospital kn-affil= affil-num=6 en-affil=Department of Cardiology, Kagawa Prefectural Central Hospital kn-affil= affil-num=7 en-affil=Department of Cardiology, Okayama Medical Center kn-affil= affil-num=8 en-affil=Department of Cardiology, Okayama Heart Clinic kn-affil= affil-num=9 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Density and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Density and Pharmaceutical Sciences kn-affil= en-keyword=remote ischemic preconditioning kn-keyword=remote ischemic preconditioning en-keyword=stable angina kn-keyword=stable angina en-keyword=serum creatinine kn-keyword=serum creatinine en-keyword=acute kidney injury kn-keyword=acute kidney injury END start-ver=1.4 cd-journal=joma no-vol=124 cd-vols= no-issue=1 article-no= start-page=71 end-page=73 dt-received= dt-revised= dt-accepted= dt-pub-year=2012 dt-pub=20120401 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Guidelines for treatment of chronic heart failure kn-title=慢性心不全治療ガイドライン en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=NakamuraKazufumi en-aut-sei=Nakamura en-aut-mei=Kazufumi kn-aut-name=中村一文 kn-aut-sei=中村 kn-aut-mei=一文 aut-affil-num=1 ORCID= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name=伊藤浩 kn-aut-sei=伊藤 kn-aut-mei=浩 aut-affil-num=2 ORCID= affil-num=1 en-affil= kn-affil=岡山大学病院 循環器内科 affil-num=2 en-affil= kn-affil=岡山大学大学院医歯薬学総合研究科 循環器内科学 END start-ver=1.4 cd-journal=joma no-vol=5 cd-vols= no-issue=10 article-no= start-page=501 end-page=504 dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=20190716 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Open chest epicardial mapping in an asymptomatic patient with Brugada syndrome en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=WatanabeAtsuyuki en-aut-sei=Watanabe en-aut-mei=Atsuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MoritaHiroshi en-aut-sei=Morita en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KawadaSatoshi en-aut-sei=Kawada en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TachibanaMotomi en-aut-sei=Tachibana en-aut-mei=Motomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MorimotoYoshimasa en-aut-sei=Morimoto en-aut-mei=Yoshimasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Asymptomatic kn-keyword=Asymptomatic en-keyword=Brugada syndrome kn-keyword=Brugada syndrome en-keyword=Catheter ablation kn-keyword=Catheter ablation en-keyword=Epicardial mapping kn-keyword=Epicardial mapping en-keyword=Open chest surgery kn-keyword=Open chest surgery END start-ver=1.4 cd-journal=joma no-vol=21 cd-vols= no-issue=4 article-no= start-page=161 end-page=163 dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=20191230 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Pregnancy with Fontan circulation: A report of case series in Japan en-subtitle= kn-subtitle= en-abstract= kn-abstract=Owing to new surgical procedures and medications, more women who have undergone the Fontan procedure reach childbearing ages. We report five cases of pregnancy with Fontan circulation. Case 1 had subchorionic hematoma (SCH), fetal growth restriction (FGR), and preterm labor (PTL). She delivered a 1073 g infant via cesarean section at gestation week 28 because of hemorrhagic shock. Case 2 delivered 2142 g and 2232 g infants at gestation weeks 37 and 36, respectively. She had FGR, PTL, and postpartum hemorrhage (PPH). Case 3 had SCH, PTL, and heart failure. At 36 weeks, labor was induced and she delivered a 2546 g infant by vacuum extraction with epidural analgesia. Cases 4 and 5 resulted in miscarriage. All subjects experienced obstetrical complications. This report discusses pregnant women with Fontan circulation by focusing on affected Japanese women. en-copyright= kn-copyright= en-aut-name=EtoEriko en-aut-sei=Eto en-aut-mei=Eriko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MakiJota en-aut-sei=Maki en-aut-mei=Jota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AkagiTeiji en-aut-sei=Akagi en-aut-mei=Teiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MasuyamaHisashi en-aut-sei=Masuyama en-aut-mei=Hisashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Cardiovascular Medicine Field of Functional Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Cardiovascular Medicine Field of Functional Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Anticoagulant kn-keyword=Anticoagulant en-keyword=Fontan circulation kn-keyword=Fontan circulation en-keyword=Labor analgesia kn-keyword=Labor analgesia en-keyword=Obstetrical complications kn-keyword=Obstetrical complications en-keyword=Pregnancy kn-keyword=Pregnancy END start-ver=1.4 cd-journal=joma no-vol=9 cd-vols= no-issue=4 article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=20191218 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Liver transplantation in a patient with hereditary haemorrhagic telangiectasia and pulmonary hypertension en-subtitle= kn-subtitle= en-abstract= kn-abstract= Hereditary haemorrhagic telangiectasia or Rendu-Osler-Weber syndrome is a systemic vascular disease with autosomal dominant inheritance, mucocutaneous telangiectasia, and repeated nasal bleeding due to vascular abnormalities. Hereditary haemorrhagic telangiectasia may occasionally lead to complications, including arteriovenous malformations and pulmonary hypertension. We present a case of a 52-year-old female patient with hereditary haemorrhagic telangiectasia who was referred to our hospital for treatment of pulmonary hypertension. She had been diagnosed with hereditary haemorrhagic telangiectasia during adolescence and was being followed up. Six months prior to presentation, she had undergone coil embolization for pulmonary haemorrhage due to pulmonary arteriovenous malformations. She was in World Health Organization functional class IV, with a mean of pulmonary arterial pressure of 38 mmHg, a pulmonary capillary wedge pressure of 10 mmHg, and a right atrial pressure of 22 mmHg. A contrast-enhanced computed tomography angiography showed large arteriovenous malformations in the liver. Right heart catheterization revealed an increase in oxygen saturation in the inferior vena cava between the supra- and infra-hepatic veins, low pulmonary vascular resistance, and high right atrial pressure. Hence, she was diagnosed with hereditary haemorrhagic telangiectasia with pulmonary hypertension due to major arteriovenous shunt resulting from arteriovenous malformations in the liver. Therefore, we considered liver transplantation as an essential treatment option. She underwent cadaveric liver transplantation after a year resulting in dramatic haemodynamic improvement to World Health Organization functional class I. Liver transplantation is a promising treatment in patients with hereditary haemorrhagic telangiectasia and pulmonary hypertension resulting from arteriovenous shunt caused by arteriovenous malformations in the liver. en-copyright= kn-copyright= en-aut-name= en-aut-sei= en-aut-mei= kn-aut-name=EjiriKentaro kn-aut-sei=Ejiri kn-aut-mei=Kentaro aut-affil-num=1 ORCID= en-aut-name=AkagiSatoshi en-aut-sei=Akagi en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakamuraKazufumi en-aut-sei=Nakamura en-aut-mei=Kazufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AmiokaNaofumi en-aut-sei=Amioka en-aut-mei=Naofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=IchikawaKeishi en-aut-sei=Ichikawa en-aut-mei=Keishi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YagiTakahito en-aut-sei=Yagi en-aut-mei=Takahito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Hepato-Biliary-Pancreatic Surgery, Okayama University Hospital kn-affil= affil-num=7 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Rendu-Osler-Weber syndrome kn-keyword=Rendu-Osler-Weber syndrome en-keyword=arteriovenous malformation kn-keyword=arteriovenous malformation en-keyword=pulmonary haemorrhage kn-keyword=pulmonary haemorrhage END start-ver=1.4 cd-journal=joma no-vol=20 cd-vols= no-issue=23 article-no= start-page=5885 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=20191123 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Current Treatment Strategies and Nanoparticle-Mediated Drug Delivery Systems for Pulmonary Arterial Hypertension en-subtitle= kn-subtitle= en-abstract= kn-abstract=There are three critical pathways for the pathogenesis and progression of pulmonary arterial hypertension (PAH): the prostacyclin (prostaglandin I-2) (PGI(2)), nitric oxide (NO), and endothelin pathways. The current approved drugs targeting these three pathways, including prostacyclin (PGI(2)), phosphodiesterase type-5 (PDE5) inhibitors, and endothelin receptor antagonists (ERAs), have been shown to be effective, however, PAH remains a severe clinical condition and the long-term survival of patients with PAH is still suboptimal. The full therapeutic abilities of available drugs are reduced by medication, patient non-compliance, and side effects. Nanoparticles are expected to address these problems by providing a novel drug delivery approach for the treatment of PAH. Drug-loaded nanoparticles for local delivery can optimize the efficacy and minimize the adverse effects of drugs. Prostacyclin (PGI(2)) analogue, PDE5 inhibitors, ERA, pitavastatin, imatinib, rapamycin, fasudil, and oligonucleotides-loaded nanoparticles have been reported to be effective in animal PAH models and in vitro studies. However, the efficacy and safety of nanoparticle mediated-drug delivery systems for PAH treatment in humans are unknown and further clinical studies are required to clarify these points. en-copyright= kn-copyright= en-aut-name=NakamuraKazufumi en-aut-sei=Nakamura en-aut-mei=Kazufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AkagiSatoshi en-aut-sei=Akagi en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=EjiriKentaro en-aut-sei=Ejiri en-aut-mei=Kentaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YoshidaMasashi en-aut-sei=Yoshida en-aut-mei=Masashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MiyoshiToru en-aut-sei=Miyoshi en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TohNorihisa en-aut-sei=Toh en-aut-mei=Norihisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NakagawaKoji en-aut-sei=Nakagawa en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TakayaYoichi en-aut-sei=Takaya en-aut-mei=Yoichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MatsubaraHiromi en-aut-sei=Matsubara en-aut-mei=Hiromi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil= Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil= Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil= Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil= Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Division of Cardiology, National Hospital Organization Okayama Medical Center kn-affil= affil-num=10 en-affil= Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=pulmonary arterial hypertension kn-keyword=pulmonary arterial hypertension en-keyword=prostaglandin I-2 kn-keyword=prostaglandin I-2 en-keyword=nitric oxide kn-keyword=nitric oxide en-keyword=endothelin kn-keyword=endothelin END start-ver=1.4 cd-journal=joma no-vol=2020 cd-vols= no-issue= article-no= start-page=6090612 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200303 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Clinical Significance of Septal Malalignment for Transcatheter Closure of Atrial Septal Defect en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background. Septal malalignment is related to erosion and device embolization in transcatheter closure of atrial septal defect (ASD), but limited information is available.
Objectives. This study aimed to assess clinical significance of septal malalignment and to determine appropriate evaluation of ASD diameter, including the selection of device size.
Methods. Four hundred and seventeen patients with ASD who underwent transcatheter closure were enrolled. Septal malalignment was defined as separation between the septum primum and the septum secundum on transesophageal echocardiography.
Results. One hundred and eighty-four patients had septal malalignment. The frequency of septal malalignment increased with age reaching around 50% in adult patients. Septal malalignment was related to aortic rim deficiency. The distance of separation between the septum primum and the septum secundum was 5 +/- 2 mm (range, 1-11 mm). In patients with septal malalignment, the ASD diameter measured at the septum primum was 19 +/- 6 mm, while the ASD diameter measured at the septum secundum was 16 +/- 6 mm. There was a difference of 4 +/- 2 mm (range, 0-8 mm) between the ASD diameter measured at the septum primum and that measured at the septum secundum. For transcatheter closure, the Amplatzer Septal Occluder device size 2-3 mm larger and the Occlutech Figulla Flex II device size 4-7 mm larger than the ASD diameter measured at the septum primum were frequently used. During the study period, erosion or device embolization did not occur in all of the patients.
Conclusions. Septal malalignment is highly prevalent in adult patients with aortic rim deficiency. The measurement of ASD diameter at the septum primum can be valuable for the selection of device size in patients with septal malalignment. en-copyright= kn-copyright= en-aut-name=TakayaYoichi en-aut-sei=Takaya en-aut-mei=Yoichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AkagiTeiji en-aut-sei=Akagi en-aut-mei=Teiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakagawaKoji en-aut-sei=Nakagawa en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NakayamaRie en-aut-sei=Nakayama en-aut-mei=Rie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MikiTakashi en-aut-sei=Miki en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=WatanabeNobuhisa en-aut-sei=Watanabe en-aut-mei=Nobuhisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TohNorihisa en-aut-sei=Toh en-aut-mei=Norihisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine,Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Cardiovascular Medicine,Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Cardiovascular Medicine,Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Cardiovascular Medicine,Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Cardiovascular Medicine,Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Division of Medical Support, Okayama University Hospital kn-affil= affil-num=7 en-affil=Department of Cardiovascular Medicine,Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Cardiovascular Medicine,Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= END start-ver=1.4 cd-journal=joma no-vol=84 cd-vols= no-issue=3 article-no= start-page=487 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200225 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=New Appearance of Fragmented QRS as a Predictor of Ventricular Arrhythmic Events in Patients With Hypertrophic Cardiomyopathy en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Multiple spikes in the QRS complex (fragmented QRS [fQRS]) on 12-lead electrocardiography have been associated with ventricular arrhythmic events (VAEs) in patients with hypertrophic cardiomyopathy (HCM). The aim of this study was to assess the association between new appearances of fQRS and cardiac events in patients with HCM.Methods and Results:The association between baseline fQRS and cardiac events, namely VAEs, heart failure-related hospitalization, and all-cause death, was evaluated retrospectively in 146 HCM patients (46 patients with fQRS, 100 without fQRS). The median follow-up was 5.3 years. Cardiac events occurred in 29 patients with baseline fQRS and 32 patients without baseline fQRS (63% vs. 32%; P<0.001). VAEs occurred in a significantly larger percentage of patients with than without baseline fQRS (54% vs. 23%, respectively; P<0.001). Of the 100 patients without baseline fQRS, 33 had a new appearance of fQRS during the 4.6-year follow-up, whereas 67 did not. VAEs occurred more frequently in the 33 patients with the appearance of fQRS than in those without (42% vs. 13%, respectively; P=0.001). Multivariable analysis showed that the new appearance of fQRS documented before VAEs was associated with VAEs (hazard ratio 4.29, 95% confidence interval 1.81-10.2; P=0.001).
Conclusions: The new appearance of fQRS was associated with an increased risk of VAEs in HCM patients. en-copyright= kn-copyright= en-aut-name=OguraSoichiro en-aut-sei=Ogura en-aut-mei=Soichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakamuraKazufumi en-aut-sei=Nakamura en-aut-mei=Kazufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MoritaHiroshi en-aut-sei=Morita en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TohNorihisa en-aut-sei=Toh en-aut-mei=Norihisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NakagawaKoji en-aut-sei=Nakagawa en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YoshidaMasashi en-aut-sei=Yoshida en-aut-mei=Masashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=WatanabeAtsuyuki en-aut-sei=Watanabe en-aut-mei=Atsuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NishiiNobuhiro en-aut-sei=Nishii en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MiyoshiToru en-aut-sei=Miyoshi en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Electrocardiography kn-keyword=Electrocardiography en-keyword=Fragmented QRS kn-keyword=Fragmented QRS en-keyword=Hospitalization kn-keyword=Hospitalization en-keyword=Hypertrophic cardiomyopathy kn-keyword=Hypertrophic cardiomyopathy en-keyword=Ventricular arrhythmia. kn-keyword=Ventricular arrhythmia. END start-ver=1.4 cd-journal=joma no-vol=2020 cd-vols= no-issue= article-no= start-page=9509105 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200428 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Impact of Right Ventricular Dilatation in Patients with Atrial Septal Defect en-subtitle= kn-subtitle= en-abstract= kn-abstract=Objective. The aim of this study was to examine the relationship between right ventricular (RV) volume and exercise capacity in adult patients with atrial septal defect (ASD) and to determine the degree of RV dilatation for transcatheter ASD closure. Background. RV dilatation is an indication of transcatheter ASD closure; however, few studies have reported the clinical significance of RV dilatation. Methods. We enrolled 82 consecutive patients (mean age, 49 +/- 18 years; female, 68%) who underwent cardiac magnetic resonance imaging and symptom-limited cardiopulmonary exercise test before ASD closure. The relationship between RV volume and peak oxygen uptake (VO2) was evaluated. Results. The mean RV end-diastolic volume index was 108 +/- 27 ml/m(2) (range, 46 to 180 ml/m(2)). The mean peak VO2 was 24 +/- 7 ml/min/kg (range, 14 to 48 ml/min/kg), and the mean predicted peak VO2 was 90 +/- 23%. There were significant negative relationships of RV end-diastolic volume index with peak VO2 (r = -0.28, p<0.01) and predicted peak VO2 (r = -0.29, p<0.01). The cutoff value of RV end-diastolic volume index <80% of predicted peak VO2 was 120 ml/m(2), with the sensitivity of 49% and the specificity of 89%. Conclusions. There was a relationship between RV dilatation and exercise capacity in adult patients with ASD. RV end-diastolic volume index >= 120 ml/m(2) was related to the reduction in peak VO2. This criterion of RV dilatation may be valuable for the indication of transcatheter ASD closure. en-copyright= kn-copyright= en-aut-name=NakayamaRie en-aut-sei=Nakayama en-aut-mei=Rie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakayaYoichi en-aut-sei=Takaya en-aut-mei=Yoichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AkagiTeiji en-aut-sei=Akagi en-aut-mei=Teiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NakagawaKoji en-aut-sei=Nakagawa en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=WatanabeNobuhisa en-aut-sei=Watanabe en-aut-mei=Nobuhisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NobusadaSaori en-aut-sei=Nobusada en-aut-mei=Saori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MatsushitaToshi en-aut-sei=Matsushita en-aut-mei=Toshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TohNorihisa en-aut-sei=Toh en-aut-mei=Norihisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KanazawaSusumu en-aut-sei=Kanazawa en-aut-mei=Susumu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name=伊藤浩 kn-aut-sei=伊藤 kn-aut-mei=浩 aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine,Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine,Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine,Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine,Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Division of Medical Support, Okayama University Hospital kn-affil= affil-num=6 en-affil=Division of Medical Support, Okayama University Hospital kn-affil= affil-num=7 en-affil=Division of Medical Support, Okayama University Hospital kn-affil= affil-num=8 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine,Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine,Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine,Dentistry and Pharmaceutical Sciences kn-affil= END start-ver=1.4 cd-journal=joma no-vol=21 cd-vols= no-issue=15 article-no= start-page=5455 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200730 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effects of Eicosapentaenoic Acid on Arterial Calcification en-subtitle= kn-subtitle= en-abstract= kn-abstract=Arterial calcification is a hallmark of advanced atherosclerosis and predicts cardiovascular events. However, there is no clinically accepted therapy that prevents progression of arterial calcification. HMG-CoA reductase inhibitors, statins, lower low-density lipoprotein-cholesterol and reduce cardiovascular events, but coronary artery calcification is actually promoted by statins. The addition of eicosapentaenoic acid (EPA) to statins further reduced cardiovascular events in clinical trials, JELIS and REDUCE-IT. Additionally, we found that EPA significantly suppressed arterial calcification in vitro and in vivo via suppression of inflammatory responses, oxidative stress and Wnt signaling. However, so far there is a lack of evidence showing the effect of EPA on arterial calcification in a clinical situation. We reviewed the molecular mechanisms of the inhibitory effect of EPA on arterial calcification and the results of some clinical trials. en-copyright= kn-copyright= en-aut-name=SaitoYukihiro en-aut-sei=Saito en-aut-mei=Yukihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakamuraKazufumi en-aut-sei=Nakamura en-aut-mei=Kazufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=eicosapentaenoic acid kn-keyword=eicosapentaenoic acid en-keyword=atherosclerosis kn-keyword=atherosclerosis en-keyword=Klotho kn-keyword=Klotho END start-ver=1.4 cd-journal=joma no-vol=10 cd-vols= no-issue=1 article-no= start-page=6869 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200422 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Deficiency of CD44 prevents thoracic aortic dissection in a murine model en-subtitle= kn-subtitle= en-abstract= kn-abstract=Thoracic aortic dissection (TAD) is a life-threatening vascular disease. We showed that CD44, a widely distributed cell surface adhesion molecule, has an important role in inflammation. In this study, we examined the role of CD44 in the development of TAD. TAD was induced by the continuous infusion of beta-aminopropionitrile (BAPN), a lysyl oxidase inhibitor, and angiotensin II (AngII) for 7 days in wild type (WT) mice and CD44 deficient (CD44(-/-)) mice. The incidence of TAD in CD44(-/-) mice was significantly reduced compared with WT mice (44% and 6%, p<0.01). Next, to evaluate the initial changes, aortic tissues at 24hours after BAPN/AngII infusion were examined. Neutrophil accumulation into thoracic aortic adventitia in CD44(-/-) mice was significantly decreased compared with that in WT mice (5.7 +/- 0.3% and 1.6 +/- 0.4%, p<0.01). In addition, BAPN/AngII induced interleukin-6, interleukin-1 beta, matrix metalloproteinase-2 and matrix metalloproteinase-9 in WT mice, all of which were significantly reduced in CD44(-/-) mice (all p<0.01). In vitro transmigration of neutrophils from CD44(-/-) mice through an endothelial monolayer was significantly decreased by 18% compared with WT mice (p<0.01). Our findings indicate that CD44 has a critical role in TAD development in association with neutrophil infiltration into adventitia. en-copyright= kn-copyright= en-aut-name=HatipogluOmer F. en-aut-sei=Hatipoglu en-aut-mei=Omer F. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MiyoshiToru en-aut-sei=Miyoshi en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YonezawaTomoko en-aut-sei=Yonezawa en-aut-mei=Tomoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KondoMegumi en-aut-sei=Kondo en-aut-mei=Megumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=AmiokaNaofumi en-aut-sei=Amioka en-aut-mei=Naofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YoshidaMasashi en-aut-sei=Yoshida en-aut-mei=Masashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=AkagiSatoshi en-aut-sei=Akagi en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NakamuraKazufumi en-aut-sei=Nakamura en-aut-mei=Kazufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HirohataSatoshi en-aut-sei=Hirohata en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= affil-num=2 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= affil-num=3 en-affil=Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= affil-num=4 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= affil-num=5 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= affil-num=6 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= affil-num=7 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= affil-num=8 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= affil-num=9 en-affil=Department of Medical Technology, Graduate School of Health Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= en-keyword=Aneurysm kn-keyword=Aneurysm en-keyword=Aortic diseases kn-keyword=Aortic diseases END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220713 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Differences in extracellular fluid volume between acute heart failure patients with and without high systolic blood pressure en-subtitle= kn-subtitle= en-abstract= kn-abstract=Aims Some reports have suggested that hypertensive acute heart failure (AHF) is caused by intravascular congestion, not interstitial congestion. We evaluated the differences in extracellular fluid volume assessed by bioelectrical impedance analysis (BIA) between AHF patients with and without high systolic blood pressure (sBP).
Methods This prospective single-centre study (UMIN000030266) included 178 patients hospitalized due to AHF between September 2017 and August 2018. We calculated extracellular water (ECW), intracellular water (ICW), total body water (TBW), and ECW-to-TBW ratio (oedema index: EI) by BIA and evaluated conventional parameters as follows: weight, N-terminal pro brain natriuretic peptide values, and echocardiography parameters on admission and before discharge. One-year outcomes included all-cause death and re-admission due to heart failure. We compared patients with sBP > 140 mmHg on admission [clinical scenario 1 (CS1) group] and with sBP of <= 140 mmHg on admission (non-CS1 group).
Results The mean age of the patients was 79.5 +/- 11.1 years, and 48.9% of the patients were female. EI on admission of 83 patients in the CS1 group was lower than that of 95 patients in the non-CS1 group. The change in EI from admission to before discharge was no significant in the CS1 group but was significant in the non-CS1 group. Comparing the changes from admission to before discharge between the CS1 and the non-CS1 group, delta ECW, delta ICW, delta TBW, and delta EI of the CS1 group were significantly smaller than those of the non-CS1 group. During the 1-year follow-up period after discharge of the 178 patients, the numbers of deaths and re-admissions due to acute HF were 26 (15%) and 49 (28%), respectively. Patients with high EI before discharge [> 0.408 (median)] had significantly more cardiac events than patients with low EI [hazard ratio (HR): 2.15, 95% confidence interval (CI): 1.30-3.55]. Cox regression analysis revealed that higher EI as a continuous variable was significantly associated with worse outcome in non-CS1 group (HR: 1.46, 95% CI: 1.13-1.87), but not significantly associated with worse outcome in CS1 group (HR: 1.29, 95% CI: 0.98-1.69).
Conclusions EI on admission in patients with high sBP was not elevated, and changes in ECW, ICW, TBW, and EI in patients with high sBP were smaller than those in patients without high sBP. EI measured by BIA could distinguish AHF with interstitial or intravascular congestion. en-copyright= kn-copyright= en-aut-name=NambaYusuke en-aut-sei=Namba en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YunokiKei en-aut-sei=Yunoki en-aut-mei=Kei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakamuraKazufumi en-aut-sei=Nakamura en-aut-mei=Kazufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=EjiriKentaro en-aut-sei=Ejiri en-aut-mei=Kentaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OkaTakefumi en-aut-sei=Oka en-aut-mei=Takefumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Cardiovascular Medicine, Tsuyama Chuo Hospital kn-affil= affil-num=3 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Cardiovascular Medicine, Tsuyama Chuo Hospital kn-affil= affil-num=6 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Acute heart failure kn-keyword=Acute heart failure en-keyword=High systolic blood pressure kn-keyword=High systolic blood pressure en-keyword=Fluid volume kn-keyword=Fluid volume en-keyword=Oedema index kn-keyword=Oedema index END start-ver=1.4 cd-journal=joma no-vol=9 cd-vols= no-issue=16 article-no= start-page=e015103 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200818 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effect of Luseogliflozin on Heart Failure With Preserved Ejection Fraction in Patients With Diabetes Mellitus en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background
Effects of sodium‐glucose cotransporter 2 inhibitors on reducing hospitalization for heart failure have been reported in randomized controlled trials, but their effects on patients with heart failure with preserved ejection fraction (HFpEF) are unknown. This study aimed to evaluate the drug efficacy of luseogliflozin, a sodium‐glucose cotransporter 2 inhibitor, in patients with type 2 diabetes mellitus and HFpEF.
Methods and Results
We performed a multicenter, open‐label, randomized, controlled trial for comparing luseogliflozin 2.5 mg once daily with voglibose 0.2 mg 3 times daily in patients with type 2 diabetes mellitus suffering from HFpEF (left ventricular ejection fraction >45% and BNP [B‐type natriuretic peptide] concentrations ≥35 pg/mL) in a 1:1 randomization fashion. The primary outcome was the difference from baseline in BNP levels after 12 weeks of treatment between the 2 drugs. A total of 173 patients with diabetes mellitus and HFpEF were included. Of these, 83 patients were assigned to receive luseogliflozin and 82 to receive voglibose. There was no significant difference in the reduction in BNP concentrations after 12 weeks from baseline between the 2 groups. The ratio of the mean BNP value at week 12 to the baseline value was 0.79 in the luseogliflozin group and 0.87 in the voglibose group (percent change, −9.0% versus −1.9%; ratio of change with luseogliflozin versus voglibose, 0.93; 95% CI, 0.78–1.10; P=0.26).
Conclusion
In patients with type 2 diabetes mellitus and HFpEF, there is no significant difference in the degree of reduction in BNP concentrations after 12 weeks between luseogliflozin and voglibose. en-copyright= kn-copyright= en-aut-name=EjiriKentaro en-aut-sei=Ejiri en-aut-mei=Kentaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MiyoshiToru en-aut-sei=Miyoshi en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KiharaHajime en-aut-sei=Kihara en-aut-mei=Hajime kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HataYoshiki en-aut-sei=Hata en-aut-mei=Yoshiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NaganoToshihiko en-aut-sei=Nagano en-aut-mei=Toshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TakaishiAtsushi en-aut-sei=Takaishi en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TodaHironobu en-aut-sei=Toda en-aut-mei=Hironobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NanbaSeiji en-aut-sei=Nanba en-aut-mei=Seiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NakamuraYoichi en-aut-sei=Nakamura en-aut-mei=Yoichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=AkagiSatoshi en-aut-sei=Akagi en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=SakuragiSatoru en-aut-sei=Sakuragi en-aut-mei=Satoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=MinagawaTaro en-aut-sei=Minagawa en-aut-mei=Taro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=KawaiYusuke en-aut-sei=Kawai en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=NishiiNobuhiro en-aut-sei=Nishii en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=FukeSoichiro en-aut-sei=Fuke en-aut-mei=Soichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=YoshikawaMasaki en-aut-sei=Yoshikawa en-aut-mei=Masaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=NakamuraKazufumi en-aut-sei=Nakamura en-aut-mei=Kazufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= affil-num=1 en-affil=Okayama University Graduate School of Medicine, Density and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Okayama University Graduate School of Medicine, Density and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Internal Medicine, Kihara Cardiovascular Clinic kn-affil= affil-num=4 en-affil=Department of Cardiology, Minamino Cardiovascular Hospital kn-affil= affil-num=5 en-affil=Department of Internal Medicine, Iwasa Hospital kn-affil= affil-num=6 en-affil=Department of Cardiology, Mitoyo General Hospital kn-affil= affil-num=7 en-affil=Okayama University Graduate School of Medicine, Density and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Cardiology, Okayama Rosai Hospital kn-affil= affil-num=9 en-affil=Department of Cardiovascular Medicine, Specified Clinic of Soyokaze Cardiovascular Medicine and Diabetes Care kn-affil= affil-num=10 en-affil=Okayama University Graduate School of Medicine, Density and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Cardiovascular Medicine, Iwakuni Clinical Center kn-affil= affil-num=12 en-affil=Department of Internal Medicine, Minagawa Cardiovascular Clinic kn-affil= affil-num=13 en-affil=Department of Cardiovascular Medicine, Okayama City Hospital kn-affil= affil-num=14 en-affil=Okayama University Graduate School of Medicine, Density and Pharmaceutical Sciences kn-affil= affil-num=15 en-affil=Department of Cardiovascular Medicine, Japanese Red Cross Okayama Hospital kn-affil= affil-num=16 en-affil=Department of Cardiology, Fukuyama City Hospital kn-affil= affil-num=17 en-affil=Okayama University Graduate School of Medicine, Density and Pharmaceutical Sciences kn-affil= affil-num=18 en-affil=Okayama University Graduate School of Medicine, Density and Pharmaceutical Sciences kn-affil= en-keyword=B-type natriuretic peptide kn-keyword=B-type natriuretic peptide en-keyword=diabetes mellitus kn-keyword=diabetes mellitus en-keyword=heart failure kn-keyword=heart failure en-keyword=sodium-glucose cotransporter 2 inhibitor kn-keyword=sodium-glucose cotransporter 2 inhibitor END start-ver=1.4 cd-journal=joma no-vol=9 cd-vols= no-issue= article-no= start-page=904215 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220630 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Pemafibrate Prevents Rupture of Angiotensin II-Induced Abdominal Aortic Aneurysms en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Abdominal aortic aneurysm (AAA) is a life-threatening disease that lacks effective preventive therapies. This study aimed to evaluate the effect of pemafibrate, a selective peroxisome proliferator-activated receptor alpha (PPAR alpha) agonist, on AAA formation and rupture.
Methods: Experimental AAA was induced by subcutaneous angiotensin II (AngII) infusion in ApoE(-)(/)(-) mice for 4 weeks. Pemafibrate (0.1 mg/kg/day) was administered orally. Dihydroethidium staining was used to evaluate the reactive oxygen species (ROS).
Results: The size of the AngII-induced AAA did not differ between pemafibrate- and vehicle-treated groups. However, a decreased mortality rate due to AAA rupture was observed in pemafibrate-treated mice. Pemafibrate ameliorated AngII-induced ROS and reduced the mRNA expression of interleukin-6 and tumor necrosis factor-alpha in the aortic wall. Gelatin zymography analysis demonstrated significant inhibition of matrix metalloproteinase-2 activity by pemafibrate. AngII-induced ROS production in human vascular smooth muscle cells was inhibited by pre-treatment with pemafibrate and was accompanied by an increase in catalase activity. Small interfering RNA-mediated knockdown of catalase or PPAR alpha significantly attenuated the anti-oxidative effect of pemafibrate.
Conclusion: Pemafibrate prevented AAA rupture in a murine model, concomitant with reduced ROS, inflammation, and extracellular matrix degradation in the aortic wall. The protective effect against AAA rupture was partly mediated by the anti-oxidative effect of catalase induced by pemafibrate in the smooth muscle cells. en-copyright= kn-copyright= en-aut-name=AmiokaNaofumi en-aut-sei=Amioka en-aut-mei=Naofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MiyoshiToru en-aut-sei=Miyoshi en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YonezawaTomoko en-aut-sei=Yonezawa en-aut-mei=Tomoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KondoMegumi en-aut-sei=Kondo en-aut-mei=Megumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=AkagiSatoshi en-aut-sei=Akagi en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YoshidaMasashi en-aut-sei=Yoshida en-aut-mei=Masashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SaitoYukihiro en-aut-sei=Saito en-aut-mei=Yukihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NakamuraKazufumi en-aut-sei=Nakamura en-aut-mei=Kazufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Molecular Biology and Biochemistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=pemafibrate kn-keyword=pemafibrate en-keyword=angiotensin II kn-keyword=angiotensin II en-keyword=abdominal aortic aneurysm kn-keyword=abdominal aortic aneurysm en-keyword=oxidative stress kn-keyword=oxidative stress en-keyword=catalase kn-keyword=catalase END start-ver=1.4 cd-journal=joma no-vol=4 cd-vols= no-issue=6 article-no= start-page=523 end-page=525 dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=202012 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Residual Restrictive Right Ventricular Physiology after One-and-a-Half Ventricular Repair Conversion in Pulmonary Atresia with Intact Ventricular Septum en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=SurugaKazuki en-aut-sei=Suruga en-aut-mei=Kazuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TohNorihisa en-aut-sei=Toh en-aut-mei=Norihisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KotaniYasuhiro en-aut-sei=Kotani en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OnishiHideki en-aut-sei=Onishi en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=AkagiTeiji en-aut-sei=Akagi en-aut-mei=Teiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KasaharaShingo en-aut-sei=Kasahara en-aut-mei=Shingo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= en-keyword=Adult congenital heart disease kn-keyword=Adult congenital heart disease en-keyword=Pulmonary atresia with intact ventricular septum kn-keyword=Pulmonary atresia with intact ventricular septum en-keyword=Restrictive right ventricular physiology kn-keyword=Restrictive right ventricular physiology END start-ver=1.4 cd-journal=joma no-vol=9 cd-vols= no-issue=23 article-no= start-page=e016907 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20201123 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Significance of Exercise-Related Ventricular Arrhythmias in Patients With Brugada Syndrome en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background
Sinus tachycardia during exercise attenuates ST‐segment elevation in patients with Brugada syndrome, whereas ST‐segment augmentation after an exercise test is a high‐risk sign. Some patients have premature ventricular contractions (PVCs) related to exercise, but the significance of exercise‐related PVCs in patients with Brugada syndrome is still unknown. The objective of this study was to determine the significance of exercise‐related PVCs for predicting occurrence of ventricular fibrillation (VF) in patients with Brugada syndrome.
Methods and Results
The subjects were 307 patients with Brugada syndrome who performed a treadmill exercise test. We evaluated the occurrence of PVCs at rest, during exercise and at the peak of exercise, and during recovery after exercise (0–5 minutes). We followed the patients for 92±68 months and evaluated the occurrence of VF. PVCs occurred in 82 patients (27%) at the time of treadmill exercise test: PVCs appeared at rest in 14 patients (4%), during exercise in 60 patients (20%), immediately after exercise (0–1.5 minutes) in 28 patients (9%), early after exercise (1.5–3 minutes) in 18 patients (6%), and late after exercise (3–5 minutes) in 12 patients (4%). Thirty patients experienced VF during follow‐up. Multivariable analysis including symptoms, spontaneous type 1 ECG, and PVCs in the early recovery phase showed that these factors were independently associated with VF events during follow‐up.
Conclusions
PVCs early after an exercise test are associated with future occurrence of VF events. Rebound of vagal nerve activity at the early recovery phase would promote ST‐segment augmentation and PVCs in high‐risk patients with Brugada syndrome. en-copyright= kn-copyright= en-aut-name=MoritaHiroshi en-aut-sei=Morita en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AsadaSaori T. en-aut-sei=Asada en-aut-mei=Saori T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MiyamotoMasakazu en-aut-sei=Miyamoto en-aut-mei=Masakazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MorimotoYoshimasa en-aut-sei=Morimoto en-aut-mei=Yoshimasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KimuraTomonari en-aut-sei=Kimura en-aut-mei=Tomonari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MizunoTomofumi en-aut-sei=Mizuno en-aut-mei=Tomofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NakagawaKoji en-aut-sei=Nakagawa en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=WatanabeAtsuyuki en-aut-sei=Watanabe en-aut-mei=Atsuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NishiiNobuhiro en-aut-sei=Nishii en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Cardiovascular Therapeutics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine and Dentistry kn-affil= affil-num=3 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine and Dentistry kn-affil= affil-num=4 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine and Dentistry kn-affil= affil-num=5 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine and Dentistry kn-affil= affil-num=6 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine and Dentistry kn-affil= affil-num=7 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine and Dentistry kn-affil= affil-num=8 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine and Dentistry kn-affil= affil-num=9 en-affil=Department of Cardiovascular Therapeutics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine and Dentistry kn-affil= en-keyword=Brugada syndrome kn-keyword=Brugada syndrome en-keyword=exercise test kn-keyword=exercise test en-keyword=premature ventricular contractions kn-keyword=premature ventricular contractions en-keyword=sudden death kn-keyword=sudden death en-keyword=ventricular fibrillation kn-keyword=ventricular fibrillation END start-ver=1.4 cd-journal=joma no-vol=19 cd-vols= no-issue=1 article-no= start-page=213 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20201214 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Correction to: Combination therapy with pemafibrate (K-877) and pitavastatin improves vascular endothelial dysfunction in dahl/salt-sensitive rats fed a high-salt and high-fat diet en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=YoshidaMasatoki en-aut-sei=Yoshida en-aut-mei=Masatoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakamuraKazufumi en-aut-sei=Nakamura en-aut-mei=Kazufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MiyoshiToru en-aut-sei=Miyoshi en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YoshidaMasashi en-aut-sei=Yoshida en-aut-mei=Masashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KondoMegumi en-aut-sei=Kondo en-aut-mei=Megumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=AkazawaKaoru en-aut-sei=Akazawa en-aut-mei=Kaoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KimuraTomonari en-aut-sei=Kimura en-aut-mei=Tomonari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OhtsukaHiroaki en-aut-sei=Ohtsuka en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=OhnoYuko en-aut-sei=Ohno en-aut-mei=Yuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MiuraDaiji en-aut-sei=Miura en-aut-mei=Daiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Basic and Clinical Medicine, Nagano College of Nursing kn-affil= affil-num=11 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= END start-ver=1.4 cd-journal=joma no-vol=84 cd-vols= no-issue=2 article-no= start-page=245 end-page=251 dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200124 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Marked Reduction of Pulmonary Artery Pressure After Registration for Lung Transplantation Is Associated With Long-Term Survival in Patients With Pulmonary Arterial Hypertension ― Cohort Study ― en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background:The waiting period for lung transplantation (LT) is approximately 3 years in Japan. The prognosis of patients with pulmonary arterial hypertension (PAH) awaiting LT is poor without LT. Patients at the present center often survive in the long term after registration for LT. The aim of this study was to elucidate why some patients survive in the long term by investigating changes in pulmonary artery pressure (PAP) after registration, and medication used.
Methods and Results:This study involved 57 patients with PAH who were enrolled in a registry for LT at Okayama University Hospital. We divided patients into 3 groups according to outcome: LT (n=27); death without LT (n=21); and survival without LT (n=9). The median interval from PAH diagnosis to epoprostenol treatment was shorter in the survival group (58 days) than in the LT group (378 days) and death group (545 days). Eight patients in the survival group, 13 in the LT group, and 13 in the death group underwent right heart catheterization after registration. Percent change in mean PAP after registration was significantly greater in the survival group (−32%) than in the LT group (−13%) and death group (1%; P<0.01).
Conclusions:Even after LT registration, patients who received epoprostenol infusion soon after diagnosis of PAH often had marked reduction in PAP and long-term survival without LT. en-copyright= kn-copyright= en-aut-name=AkagiSatoshi en-aut-sei=Akagi en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatsubaraHiromi en-aut-sei=Matsubara en-aut-mei=Hiromi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakamuraKazufumi en-aut-sei=Nakamura en-aut-mei=Kazufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OtoTakahiro en-aut-sei=Oto en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=EjiriKentaro en-aut-sei=Ejiri en-aut-mei=Kentaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= affil-num=2 en-affil=Division of Cardiology, Okayama Medical Center kn-affil= affil-num=3 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= affil-num=4 en-affil=Department of Organ Transplant Center, Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= affil-num=6 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= en-keyword=Lung transplantation kn-keyword=Lung transplantation en-keyword=Pulmonary artery hypertension kn-keyword=Pulmonary artery hypertension en-keyword=Pulmonary artery pressure kn-keyword=Pulmonary artery pressure en-keyword=Survival kn-keyword=Survival END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=1 article-no= start-page=1 end-page=11 dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200617 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Outcomes of Patients with Pulmonary Atresia with Intact Ventricular Septum Reaching Adulthood en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: There is limited information on outcomes of adult patients with pulmonary atresia with intact ventricular septum (PA-IVS) due to the low incidence of disease and the large variation of surgical histories. Methods: Among 58 patients with repaired PA-IVS, a total of 32 patients aged ≥16 years and who were followed at our institution between January 2003 and December 2018 were reviewed. Surgical history, clinical outcomes, and laboratory, echocardiographic and electrocardiographic data were obtained by chart review. Results: Follow-up was from the age of 16 years and the median age at the latest follow-up was 23.7 years. Twenty-four patients had undergone biventricular repair (BVR), 3 had undergone one-and-a half ventricular repair (1.5VR), and 5 had undergone univentricular repair. Over a median follow-up period of 7.7 years (interquartile range: 4.1–11.0 years), 1 BVR patient died suddenly and 7 patients had heart failure. Arrhythmias were present in 5 patients. Ten patients underwent surgical re-interventions, including 4 BVR take-downs with conversion to 1.5VR and 3 Fontan conversions. Overall survival, heart failure-free, arrhythmia-free, and surgical re-intervention-free rates at 5 years and 10 years from the age of 16 years were 96.2% (95% confidence interval [CI], 77.2–99.4) and 96.2% (95% CI, 77.2– 99.4), 81.4% (95% CI, 62.1–92.1) and 74.6% (95%CI, 52.3–88.7), 88.7% (95% CI, 70.1–96.3) and 75.9% (95% CI, 51.7–90.2), and 80.7% (95% CI, 60.8–91.8) and 70.8% (95% CI, 49.7–85.7), respectively. Conclusion: Adults with PA-IVS have preserved long-term survival regardless of the early operative strategy, while they are at risk for heart failure, arrhythmia, and surgical re-intervention. Thus, detailed and continued follow-up is mandatory for all PA-IVS patients from childhood to adulthood. en-copyright= kn-copyright= en-aut-name=TohNorihisa en-aut-sei=Toh en-aut-mei=Norihisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KotaniYasuhiro en-aut-sei=Kotani en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AkagiTeiji en-aut-sei=Akagi en-aut-mei=Teiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KurokoYosuke en-aut-sei=Kuroko en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=BabaKenji en-aut-sei=Baba en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OtsukiShin-ichi en-aut-sei=Otsuki en-aut-mei=Shin-ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KasaharaShingo en-aut-sei=Kasahara en-aut-mei=Shingo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Pediatric Cardiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Pediatric Cardiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Pulmonary atresia with intact ventricular septum kn-keyword=Pulmonary atresia with intact ventricular septum en-keyword=adult congenital heart disease kn-keyword=adult congenital heart disease en-keyword=outcome kn-keyword=outcome END start-ver=1.4 cd-journal=joma no-vol=20 cd-vols= no-issue=1 article-no= start-page=2021 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210107 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Prognostic value of non-alcoholic fatty liver disease for predicting cardiovascular events in patients with diabetes mellitus with suspected coronary artery disease: a prospective cohort study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background
Risk stratification of cardiovascular events in patients with type 2 diabetes mellitus (T2DM) has not been established. Coronary artery calcium score (CACS) and non-alcoholic fatty liver disease (NAFLD) are independently associated with cardiovascular events in T2DM patients. This study examined the incremental prognostic value of NAFLD assessed by non-enhanced computed tomography (CT) in addition to CACS and Framingham risk score (FRS) for cardiovascular events in T2DM patients.
Methods
This prospective pilot study included 529 T2DM outpatients with no history of cardiovascular disease who underwent CACS measurement because of suspected coronary artery disease. NAFLD was defined on CT images as a liver:spleen attenuation ratio < 1.0. Cardiovascular events were defined as cardiovascular death, nonfatal myocardial infarction, late coronary revascularization, nonfatal stroke, or hospitalization for heart failure.
Results
Among 529 patients (61% men, mean age 65 years), NAFLD was identified in 143 (27%). Forty-four cardiovascular events were documented during a median follow-up of 4.4 years. In multivariate Cox regression analysis, NAFLD, CACS, and FRS were associated with cardiovascular events (hazard ratios and 95% confidence intervals 5.43, 2.82–10.44, p < 0.001; 1.56, 1.32–1.86, p < 0.001; 1.23, 1.08–1.39, p = 0.001, respectively). The global χ2 score for predicting cardiovascular events increased significantly from 27.0 to 49.7 by adding NAFLD to CACS and FRS (p < 0.001). The addition of NAFLD to a model including CACS and FRS significantly increased the C-statistic from 0.71 to 0.80 (p = 0.005). The net reclassification achieved by adding CACS and FRS was 0.551 (p < 0.001).
Conclusions
NAFLD assessed by CT, in addition to CACS and FRS, could be useful for identifying T2DM patients at higher risk of cardiovascular events. en-copyright= kn-copyright= en-aut-name=IchikawaKeishi en-aut-sei=Ichikawa en-aut-mei=Keishi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MiyoshiToru en-aut-sei=Miyoshi en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OsawaKazuhiro en-aut-sei=Osawa en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MikiTakashi en-aut-sei=Miki en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TodaHironobu en-aut-sei=Toda en-aut-mei=Hironobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=EjiriKentaro en-aut-sei=Ejiri en-aut-mei=Kentaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YoshidaMasatoki en-aut-sei=Yoshida en-aut-mei=Masatoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NanbaYusuke en-aut-sei=Nanba en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=YoshidaMasashi en-aut-sei=Yoshida en-aut-mei=Masashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=NakamuraKazufumi en-aut-sei=Nakamura en-aut-mei=Kazufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MoritaHiroshi en-aut-sei=Morita en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=2 en-affil=Department of Cardiovascular Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=3 en-affil=Department of Cardiovascular Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=4 en-affil=Department of Cardiovascular Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=5 en-affil=Department of Cardiovascular Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=6 en-affil=Department of Cardiovascular Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=7 en-affil=Department of Cardiovascular Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=8 en-affil=Department of Cardiovascular Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=9 en-affil=Department of Cardiovascular Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=10 en-affil=Department of Cardiovascular Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=11 en-affil=Department of Cardiovascular Therapeutics, Dentistry, and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=12 en-affil=Department of Cardiovascular Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= en-keyword=Cardiovascular disease kn-keyword=Cardiovascular disease en-keyword=Computed tomography kn-keyword=Computed tomography en-keyword=Coronary artery calcium kn-keyword=Coronary artery calcium en-keyword=Non-alcoholic fatty liver disease kn-keyword=Non-alcoholic fatty liver disease en-keyword=Risk stratification kn-keyword=Risk stratification END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue=1 article-no= start-page=253 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210117 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Secular Decreasing Trend in Plasma Eicosapentaenoic and Docosahexaenoic Acids among Patients with Acute Coronary Syndrome from 2011 to 2019: A Single Center Descriptive Study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Despite intensive lipid-lowering interventions, patients treated with statins develop atherosclerotic cardiovascular disease (ASCVD), and these patients have an increased risk of developing recurrent cardiovascular events during follow-up. Therefore, there is a need to focus on the residual risks in patients in statin therapy to further reduce ASCVD. The aim of this study was to retrospectively investigate the 10-year trend (2011-2019) regarding changes in polyunsaturated fatty acids (PUFAs) in patients with acute coronary syndrome (ACS) in a single center. We included 686 men and 203 women with ACS admitted to Kagawa Prefectural Central Hospital. Plasma PUFAs, including eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), arachidonic acid (AA), and dihomo-gamma-linolenic acid (DGLA), were measured at admission for suspected ACS. A secular decreasing trend in the levels of EPA and DHA and the EPA/AA ratio, but not of AA and DGLA, was observed. The analyses based on age (>70 or <70 years) and sex showed that the decreasing trend in the levels of EPA and DHA did not depend on age and remained significant only in men. Further studies are needed to obtain robust evidence to justify that the administration of n-3 PUFA contributes to the secondary prevention of ACS. en-copyright= kn-copyright= en-aut-name=OkadaTomoaki en-aut-sei=Okada en-aut-mei=Tomoaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MiyoshiToru en-aut-sei=Miyoshi en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=DoiMasayuki en-aut-sei=Doi en-aut-mei=Masayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SeiyamaKosuke en-aut-sei=Seiyama en-aut-mei=Kosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakagiWataru en-aut-sei=Takagi en-aut-mei=Wataru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SogoMasahiro en-aut-sei=Sogo en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NosakaKazumasa en-aut-sei=Nosaka en-aut-mei=Kazumasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TakahashiMasahiko en-aut-sei=Takahashi en-aut-mei=Masahiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=OkawaKeisuke en-aut-sei=Okawa en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Cardiology, Kagawa Prefectural Central Hospital kn-affil= affil-num=2 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Cardiology, Kagawa Prefectural Central Hospital kn-affil= affil-num=4 en-affil=Department of Cardiology, Kagawa Prefectural Central Hospital kn-affil= affil-num=5 en-affil=Department of Cardiology, Kagawa Prefectural Central Hospital kn-affil= affil-num=6 en-affil=Department of Cardiology, Kagawa Prefectural Central Hospital kn-affil= affil-num=7 en-affil=Department of Cardiology, Kagawa Prefectural Central Hospital kn-affil= affil-num=8 en-affil=Department of Cardiology, Kagawa Prefectural Central Hospital kn-affil= affil-num=9 en-affil=Department of Cardiology, Kagawa Prefectural Central Hospital kn-affil= affil-num=10 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=atherosclerotic cardiovascular disease kn-keyword=atherosclerotic cardiovascular disease en-keyword=polyunsaturated fatty acids kn-keyword=polyunsaturated fatty acids en-keyword=eicosapentaenoic acid kn-keyword=eicosapentaenoic acid en-keyword=docosahexaenoic acid kn-keyword=docosahexaenoic acid en-keyword=arachidonic acid kn-keyword=arachidonic acid en-keyword=descriptive study kn-keyword=descriptive study END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue=2 article-no= start-page=371 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210126 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=High Plasma Docosahexaenoic Acid Associated to Better Prognoses of Patients with Acute Decompensated Heart Failure with Preserved Ejection Fraction en-subtitle= kn-subtitle= en-abstract= kn-abstract=The clinical relevance of polyunsaturated fatty acids (PUFAs) in heart failure remains unclear. The aim of this study was to investigate the association between PUFA levels and the prognosis of patients with heart failure with preserved ejection fraction (HFpEF). This retrospective study included 140 hospitalized patients with acute decompensated HFpEF (median age 84.0 years, 42.9% men). The patients' nutritional status was assessed, using the geriatric nutritional risk index (GNRI), and their plasma levels of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), arachidonic acid (AA), and dihomo-gamma-linolenic acid (DGLA) were measured before discharge. The primary outcome was all-cause mortality. During a median follow-up of 23.3 months, the primary outcome occurred in 37 patients (26.4%). A Kaplan-Meier analysis showed that lower DHA and DGLA levels, but not EPA or AA levels, were significantly associated with an increase in all-cause death (log-rank; p < 0.001 and p = 0.040, respectively). A multivariate Cox regression analysis also revealed that DHA levels were significantly associated with the incidence of all-cause death (HR: 0.16, 95% CI: 0.06-0.44, p = 0.001), independent of the GNRI. Our results suggest that low plasma DHA levels may be a useful predictor of all-cause mortality and potential therapeutic target in patients with acute decompensated HFpEF. en-copyright= kn-copyright= en-aut-name=MatsuoNaoaki en-aut-sei=Matsuo en-aut-mei=Naoaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MiyoshiToru en-aut-sei=Miyoshi en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TakaishiAtsushi en-aut-sei=Takaishi en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KishinoueTakao en-aut-sei=Kishinoue en-aut-mei=Takao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YasuharaKentaro en-aut-sei=Yasuhara en-aut-mei=Kentaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TanimotoMasafumi en-aut-sei=Tanimoto en-aut-mei=Masafumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NakanoYukari en-aut-sei=Nakano en-aut-mei=Yukari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OnishiNobuhiko en-aut-sei=Onishi en-aut-mei=Nobuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=UeedaMasayuki en-aut-sei=Ueeda en-aut-mei=Masayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Cardiovascular Medicine, Mitoyo General Hospital kn-affil= affil-num=4 en-affil=Department of Cardiovascular Medicine, Mitoyo General Hospital kn-affil= affil-num=5 en-affil=Department of Cardiovascular Medicine, Mitoyo General Hospital kn-affil= affil-num=6 en-affil=Department of Cardiovascular Medicine, Mitoyo General Hospital kn-affil= affil-num=7 en-affil=Nakano Cardiovascular Clinic kn-affil= affil-num=8 en-affil=Department of Cardiovascular Medicine, Mitoyo General Hospital kn-affil= affil-num=9 en-affil=Ueeda Cardiovascular Clinic kn-affil= affil-num=10 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=heart failure with preserved ejection fraction kn-keyword=heart failure with preserved ejection fraction en-keyword=docosahexaenoic acid kn-keyword=docosahexaenoic acid en-keyword=geriatric nutritional risk index kn-keyword=geriatric nutritional risk index END start-ver=1.4 cd-journal=joma no-vol=9 cd-vols= no-issue=1 article-no= start-page=2045894019831217 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=20190215 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Improvement of lung function and pulmonary hypertension after pulmonary aneurysm repair: case series en-subtitle= kn-subtitle= en-abstract= kn-abstract=Pulmonary artery aneurysms (PAA) can be complicated with pulmonary arterial hypertension (PAH), causing sudden death due to PA rupture and dissection. Because treatment with PAH-targeted drugs does not always prevent PAA progression, prophylactic surgical repair of the PAA seems a promising alternative. However, although it avoids rupture and dissection of the PAs, additional benefits have not been forthcoming. We therefore present two patients with co-existing PAH and a PAA who underwent surgical repair of the aneurysm. Following the surgery, their lung function and pulmonary hypertension improved. Optimal treatment of PAA remains uncertain, however, with no clear guidelines regarding the best therapeutic approach. This case series provides physicians with reasons to repair PAA surgically in patients with PAH. en-copyright= kn-copyright= en-aut-name=AkagiSatoshi en-aut-sei=Akagi en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=EjiriKentaro en-aut-sei=Ejiri en-aut-mei=Kentaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KasaharaShingo en-aut-sei=Kasahara en-aut-mei=Shingo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NakamuraKazufumi en-aut-sei=Nakamura en-aut-mei=Kazufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= affil-num=2 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= affil-num=3 en-affil=Department of Cardiovascular Surgery, Okayama University Hospital kn-affil= affil-num=4 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= affil-num=5 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= en-keyword=vital capacity kn-keyword=vital capacity en-keyword=pulmonary artery pressure kn-keyword=pulmonary artery pressure en-keyword=lung perfusion and oxygenation kn-keyword=lung perfusion and oxygenation END start-ver=1.4 cd-journal=joma no-vol=8 cd-vols= no-issue=3 article-no= start-page=1751 end-page=1758 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210324 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Efficacy of shear wave elastography for assessment of liver function in patients with heart failure en-subtitle= kn-subtitle= en-abstract= kn-abstract=Aims
Liver dysfunction is important for prognosis in heart failure (HF). Shear wave elastography (SWE), which is a novel ultrasound technique for charactering tissues, has been used in liver diseases. However, clinical implication of SWE, including dispersion slope, remains unknown in heart diseases. This study aimed to evaluate the efficacy of SWE assessing liver function in the severity of HF.
Methods and results
We enrolled 316 consecutive patients with or suspected heart diseases, who were classified according to the American College of Cardiology Foundation/American Heart Association stage of HF, including 37 with Stage A, 139 with Stage B, 114 with Stage C, and 26 with Stage D, and 45 normal subjects. Elasticity and dispersion slope of shear wave were assessed according to the HF stage. Elasticity and dispersion slope were not elevated in normal subjects and patients with Stage A. Elasticity was slightly increased from Stage A to Stage C and was remarkably elevated in Stage D (normal: 5.2 ± 1.1 kPa, Stage A: 5.4 ± 1.2 kPa, Stage B: 6.4 ± 1.8 kPa, Stage C: 7.8 ± 3.5 kPa, and Stage D: 17.7 ± 12.7 kPa), whereas dispersion slope was gradually increased from Stage A to Stage D (normal: 9.7 ± 1.7m/s/kHz, Stage A: 10.4 ± 1.6m/s/kHz, Stage B: 11.7 ± 2.4m/s/kHz, Stage C: 13.2 ± 3.4m/s/kHz, and Stage D: 17.6 ± 5.6 m/s/kHz). In the early HF stage, dispersion slope was elevated. In the advanced HF stage, both elasticity and dispersion slope were elevated. Liver function test abnormalities were observed only from Stage C or Stage D.
Conclusions
Dispersion slope could detect early liver damage, and the combination of elasticity and dispersion slope could clarify the progression of liver dysfunction in HF. SWE may be valuable to manage therapeutic strategies in patients with HF. en-copyright= kn-copyright= en-aut-name=NakayamaRie en-aut-sei=Nakayama en-aut-mei=Rie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakayaYoichi en-aut-sei=Takaya en-aut-mei=Yoichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakamuraKazufumi en-aut-sei=Nakamura en-aut-mei=Kazufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TohNorihisa en-aut-sei=Toh en-aut-mei=Norihisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= affil-num=2 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= affil-num=3 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= affil-num=4 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= affil-num=5 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= en-keyword=Shear wave elastography kn-keyword=Shear wave elastography en-keyword=Elasticity kn-keyword=Elasticity en-keyword=Dispersion slope kn-keyword=Dispersion slope en-keyword=Liver dysfunction kn-keyword=Liver dysfunction en-keyword=Heart failure kn-keyword=Heart failure END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210402 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Low-Angle Patent Foramen Ovale (PFO): High-Risk PFO Morphology Associated with Paradoxical Embolism en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=NakayamaRie en-aut-sei=Nakayama en-aut-mei=Rie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakayaYoichi en-aut-sei=Takaya en-aut-mei=Yoichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AkagiTeiji en-aut-sei=Akagi en-aut-mei=Teiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MikiTakashi en-aut-sei=Miki en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NakagawaKoji en-aut-sei=Nakagawa en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TohNorihisa en-aut-sei=Toh en-aut-mei=Norihisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= en-keyword=Patent foramen ovale kn-keyword=Patent foramen ovale en-keyword=Low-angle PFO kn-keyword=Low-angle PFO en-keyword=High-risk PFO kn-keyword=High-risk PFO en-keyword=Stroke kn-keyword=Stroke END start-ver=1.4 cd-journal=joma no-vol=78 cd-vols= no-issue=1 article-no= start-page=17 end-page=23 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210207 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Efficacy of shear wave elastography for evaluating right ventricular myocardial fibrosis in monocrotaline-induced pulmonary hypertension rats en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Right ventricular (RV) function is important for outcomes in pulmonary hypertension. Evaluation of RV myocardial characteristics is useful to assess the disease severity. Shear wave elastography (SWE) provides information of shear wave (SW) elasticity, which is related to tissue hardness, and SW dispersion slope, which reflects tissue viscosity. This study aimed to test the hypothesis that SW elasticity is increased and SW dispersion slope is decreased in the right ventricle of monocrotaline (MCT)-induced pulmonary hypertension rats.

Methods: Rats were divided into MCT-induced pulmonary hypertension group (n = 10) and control group (n = 10). SW elasticity and SW dispersion slope were measured on excised hearts. Myocardial fibrosis was evaluated histologically.

Results: RV hypertrophy was observed in the MCT group. SW elasticity of right ventricle was higher in the MCT group than in the control group (3.5 ± 0.9 kPa vs. 2.5 ± 0.4 kPa, p < 0.01). SW dispersion slope of right ventricle was lower in the MCT group than in the control group (5.3 ± 1.7 m/s/kHz vs. 7.7 ± 1.5 m/s/kHz, p < 0.01). The fibrosis area of right ventricle was increased in MCT group compared with control group (18 ± 5% vs. 8 ± 3%, p < 0.01), and was positively related to SW elasticity and negatively related to SW dispersion slope.

Conclusions: Higher SW elasticity and lower SW dispersion slope were observed in the fibrotic myocardium of right ventricle in MCT-induced pulmonary hypertension rats. SWE may have the potential to evaluate RV function by assessing myocardial characteristics. en-copyright= kn-copyright= en-aut-name=NakayamaRie en-aut-sei=Nakayama en-aut-mei=Rie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakayaYoichi en-aut-sei=Takaya en-aut-mei=Yoichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakamuraKazufumi en-aut-sei=Nakamura en-aut-mei=Kazufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KondoMegumi en-aut-sei=Kondo en-aut-mei=Megumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KobayashiKaoru en-aut-sei=Kobayashi en-aut-mei=Kaoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OhnoYuko en-aut-sei=Ohno en-aut-mei=Yuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=AmiokaNaofumi en-aut-sei=Amioka en-aut-mei=Naofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=AkagiSatoshi en-aut-sei=Akagi en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=YoshidaMasashi en-aut-sei=Yoshida en-aut-mei=Masashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MiyoshiToru en-aut-sei=Miyoshi en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Kawasaki University of Medical Welfare kn-affil= affil-num=7 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil= Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Dispersion kn-keyword=Dispersion en-keyword=Elasticity kn-keyword=Elasticity en-keyword=Myocardium kn-keyword=Myocardium en-keyword=Right ventricular function kn-keyword=Right ventricular function en-keyword=Shear wave elastography kn-keyword=Shear wave elastography END start-ver=1.4 cd-journal=joma no-vol=16 cd-vols= no-issue=3 article-no= start-page=e0245502 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210304 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Usefulness of right ventriculography compared with computed tomography for ruling out the possibility of lead perforation before lead extraction en-subtitle= kn-subtitle= en-abstract= kn-abstract=Purpose High-risk patients can be identified by preprocedural computed tomography (CT) before lead extraction. However, CT evaluation may be difficult especially for lead tip identification due to artifacts in the leads. Selective right ventriculography (RVG) may enable preprocedural evaluation of lead perforation. We investigated the efficacy of RVG for identifying right ventricular (RV) lead perforation compared with CT in patients who underwent lead extraction. Methods Ninety-five consecutive patients who were examined by thin-section non-ECG-gated multi-detector CT and RVG before lead extraction were investigated retrospectively. Newly recognized pericardial effusion after lead extraction was used as a reference standard for lead perforation. We analyzed the prevalence of RV lead perforation diagnosed by each method. The difference in the detection rates of lead perforation by RVG and CT was evaluated. Results Of the 115 RV leads in the 95 patients, lead perforation was diagnosed for 35 leads using CT, but the leads for 29 (83%) of those 35 leads diagnosed as lead perforation by CT were shown to be within the right ventricle by RVG. Three patients with 5 leads could not be evaluated by CT due to motion artifacts. The diagnostic accuracies of RVG and CT were significantly different (p < 0.001). There was no complication of pericardial effusion caused by RV lead extraction. Conclusion RVG for identification of RV lead perforation leads to fewer false-positives compared to non-ECG-gated CT. However, even in cases in which lead perforation is diagnosed, most leads may be safely extracted by transvenous lead extraction. en-copyright= kn-copyright= en-aut-name=AsadaSaori en-aut-sei=Asada en-aut-mei=Saori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NishiiNobuhiro en-aut-sei=Nishii en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ShinyaTakayoshi en-aut-sei=Shinya en-aut-mei=Takayoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MiyoshiAkihito en-aut-sei=Miyoshi en-aut-mei=Akihito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MorimotoYoshimasa en-aut-sei=Morimoto en-aut-mei=Yoshimasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MiyamotoMasakazu en-aut-sei=Miyamoto en-aut-mei=Masakazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NakagawaKoji en-aut-sei=Nakagawa en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NakamuraKazufumi en-aut-sei=Nakamura en-aut-mei=Kazufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MoritaHiroshi en-aut-sei=Morita en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Cardiovascular Therapeutics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Pediatric Radiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Cardiovascular Therapeutics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= END start-ver=1.4 cd-journal=joma no-vol=10 cd-vols= no-issue=7 article-no= start-page=1480 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210402 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Increased Circulating Malondialdehyde-Modified Low-Density Lipoprotein Level Is Associated with High-Risk Plaque in Coronary Computed Tomography Angiography in Patients Receiving Statin Therapy en-subtitle= kn-subtitle= en-abstract= kn-abstract=Objective: To evaluate the association of serum malondialdehyde low-density lipoprotein (MDA-LDL), an oxidatively modified LDL, with the prevalence of high-risk plaques (HRP) determined with coronary computed tomography angiography (CTA) in statin-treated patients. Methods: This study was a single-center retrospective cohort comprising 268 patients (mean age 67 years, 58% men) with statin therapy and who underwent coronary CTA for suspected stable coronary artery disease. Patients were classified into two groups according to median MDA-LDL level or median LDL-C level. Coronary CTA-verified HRP was defined when two or more characteristics, including positive remodeling, low-density plaques, and spotty calcification, were present. Results: Patients with HRP had higher MDA-LDL (p = 0.011), but not LDL-C (p = 0.867) than those without HRP. High MDA-LDL was independently associated with HRP (odds ratio 1.883, 95% confidential interval 1.082-3.279) after adjustment for traditional risk factors. Regarding incremental value of MDA-LDL for predicting CTA-verified HRP, addition of serum MDA-LDL levels to the baseline model significantly increased global chi-square score from 26.1 to 32.8 (p = 0.010). Conclusions: A high serum MDA-LDL level is an independent predictor of CTA-verified HRP, which can lead to cardiovascular events in statin-treated patients. en-copyright= kn-copyright= en-aut-name=IchikawaKeishi en-aut-sei=Ichikawa en-aut-mei=Keishi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MiyoshiToru en-aut-sei=Miyoshi en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OsawaKazuhiro en-aut-sei=Osawa en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MikiTakashi en-aut-sei=Miki en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Cardiovascular Medicine, Japanese Red Cross Okayama Hospital kn-affil= affil-num=4 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=malondialdehyde low-density lipoprotein kn-keyword=malondialdehyde low-density lipoprotein en-keyword=high-risk plaque kn-keyword=high-risk plaque en-keyword=coronary computed tomography angiography kn-keyword=coronary computed tomography angiography en-keyword=statin kn-keyword=statin END start-ver=1.4 cd-journal=joma no-vol=4 cd-vols= no-issue=5 article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200907 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Ablation for idiopathic left ventricular tachycardia in a patient with double outlet right ventricle who underwent Fontan operation: a case report en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background
The incidence of ventricular tachycardia (VT) in patients following Fontan operation is reported as 3.5%. Furthermore, in patients with repaired double outlet right ventricle (DORV), scar-related VT and outflow tract VT have been reported; however, Purkinje-related VT has not previously been reported. In this report, we present the case of idiopathic left VT (ILVT) in a patient with DORV who underwent Fontan operation.

Case summary
A 31-year-old man was diagnosed as having DORV with complete atrioventricular defect at birth. When he was 17 years old, he underwent surgical repair, including extracardiac Fontan operation and common atrioventricular valve replacement. Five years later, VT was detected. Since some medications were ineffective in suppressing VT, he was referred to our hospital for definitive treatment. Ventricular tachycardia was induced by atrial and ventricular programmed electrical stimulations. The mechanism of the VT was determined to be re-entry. The earliest activation site was located at the mid-inferior septum of the hypoplastic left ventricle, in which Purkinje potentials were observed before the local ventricular electrogram. Radiofrequency catheter ablation (RFCA) was performed at this site to eliminate VT.

Discussion
Most VTs originate from surgical scars in patients with congenital heart disease. Catheter ablation was feasible in scar-related VT. To the best of our knowledge, this is the first report of ILVT treated successfully with RFCA in a DORV patient who had undergone Fontan operation. en-copyright= kn-copyright= en-aut-name=MiyamotoMasakazu en-aut-sei=Miyamoto en-aut-mei=Masakazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NishiiNobuhiro en-aut-sei=Nishii en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MoritaHiroshi en-aut-sei=Morita en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Cardiovascular Therapeutics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Cardiovascular Therapeutics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= en-keyword=Idiopathic left ventricular tachycardia kn-keyword=Idiopathic left ventricular tachycardia en-keyword=Double outlet right ventricle kn-keyword=Double outlet right ventricle en-keyword=Fontan operation kn-keyword=Fontan operation en-keyword=Purkinje potential kn-keyword=Purkinje potential en-keyword=Case report kn-keyword=Case report END start-ver=1.4 cd-journal=joma no-vol=100 cd-vols= no-issue=32 article-no= start-page=e26931 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210813 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Total vascular resistance, augmentation index, and augmentation pressure increase in patients with peripheral artery disease en-subtitle= kn-subtitle= en-abstract= kn-abstract=Peripheral arterial disease (PAD) is one of major vascular diseases which frequently coexists with coronary arterial disease and cerebrovascular disease. The patients with PAD have a poor prognosis when it progresses. A new blood pressure testing device enables to simultaneously measure brachial blood pressure (BP), central BP, and several vascular parameters, with easy and non-invasive, in a short time. Here, we aimed to evaluate these arterial stiffness parameters in patients with PAD. In this study, 243 consecutive patients who were suspected of having PAD and referred to our hospital from September 2016 to June 2019, were registered. Several parameters, such as brachial BP, central BP, aortic pulse wave velocity (aPWV), total vascular resistance (TVR), augmentation index (AI) and augmentation pressure (AP), were determined by Mobil-O-Graph. Ankle-brachial pressure index (ABI) was used to define PAD (ABI <= 0.9 as PAD). The relationship between PAD and central BP, aPWV, TVR, AI, or AP were investigated. One hundred sixty-two patients (67%) were categorized as the PAD group and 81 patients (33%) as the non-PAD group. In the PAD group, the systolic brachial BP and central systolic BP were significantly higher than those in the non-PAD group (138 +/- 24 mmHg vs 131 +/- 19 mmHg, P < .05, 125 +/- 22 mmHg vs 119 +/- 18 mmHg, P < .05, respectively). TVR, AI, and AP were significantly higher in the PAD group (1785 +/- 379 dyn s/cm(5) vs 1661 +/- 317 dyn s/cm(5), P < .05, 26.2 +/- 13.0% vs 22.2 +/- 13.3%, P < .05, 13.5 +/- 9.4 mmHg vs 10.7 +/- 7.2 mmHg, P < .05, respectively). No significant differences in diastolic BP, central diastolic BP, and aPWV were found between the groups. Multivariate logistic regression analysis revealed that PAD was significantly associated with TVR, AI, and AP (P < .05, respectively). TVR/AP/AI were significantly higher in the PAD group than in the non-PAD group. en-copyright= kn-copyright= en-aut-name=TakemotoRika en-aut-sei=Takemoto en-aut-mei=Rika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=UchidaHaruhito A. en-aut-sei=Uchida en-aut-mei=Haruhito A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TodaHironobu en-aut-sei=Toda en-aut-mei=Hironobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OkadaKen en-aut-sei=Okada en-aut-mei=Ken kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OtsukaFumio en-aut-sei=Otsuka en-aut-mei=Fumio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=WadaJun en-aut-sei=Wada en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Medical Support, Okayama University Hospital, Okayama, Japan, f Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Ultrasound Diagnostics Center, Okayama University Hospital kn-affil= affil-num=6 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=augmentation index kn-keyword=augmentation index en-keyword=augmentation pressure kn-keyword=augmentation pressure en-keyword=peripheral arterial disease kn-keyword=peripheral arterial disease en-keyword=total vascular resistance kn-keyword=total vascular resistance END start-ver=1.4 cd-journal=joma no-vol=10 cd-vols= no-issue=16 article-no= start-page=e020103 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210817 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Predictive Value of the Cardio-Ankle Vascular Index for Cardiovascular Events in Patients at Cardiovascular Risk en-subtitle= kn-subtitle= en-abstract= kn-abstract=BACKGROUND: Arterial stiffness is an important predictor of cardiovascular events; however, indexes for measuring arterial stiffness have not been widely incorporated into routine clinical practice. This study aimed to determine whether the cardio-ankle vascular index (CAVI), based on the blood pressure-independent stiffness parameter beta and reflecting arterial stiffness from the origin of the ascending aorta, is a good predictor of cardiovascular events in patients with cardiovascular disease risk factors in a large prospective cohort.

METHODS AND RESULTS: This multicenter prospective cohort study, commencing in May 2013, with a 5-year follow-up period, included patients (aged 40-74 years) with cardiovascular disease risks. The primary outcome was the composite of cardiovascular death, nonfatal stroke, or nonfatal myocardial infarction. Among 2932 included patients, 2001 (68.3%) were men; the mean (SD) age at diagnosis was 63 (8) years. During the median follow-up of 4.9 years, 82 participants experienced primary outcomes. The CAVI predicted the primary outcome (hazard ratio, 1.38; 95% CI, 1.16-1.65; P<0.001). In terms of event subtypes, the CAVI was associated with cardiovascular death and stroke but not with myocardial infarction. When the CAVI was incorporated into a model with known cardiovascular disease risks for predicting cardiovascular events, the global chi(2) value increased from 33.8 to 45.2 (P<0.001), and the net reclassification index was 0.254 (P=0.024).

CONCLUSIONS: This large cohort study demonstrated that the CAVI predicted cardiovascular events. en-copyright= kn-copyright= en-aut-name=MiyoshiToru en-aut-sei=Miyoshi en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ShiraiKohji en-aut-sei=Shirai en-aut-mei=Kohji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HorinakaShigeo en-aut-sei=Horinaka en-aut-mei=Shigeo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HigakiJitsuo en-aut-sei=Higaki en-aut-mei=Jitsuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YamamuraShigeo en-aut-sei=Yamamura en-aut-mei=Shigeo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SaikiAtsuhito en-aut-sei=Saiki en-aut-mei=Atsuhito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TakahashiMao en-aut-sei=Takahashi en-aut-mei=Mao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MasakiMitsuru en-aut-sei=Masaki en-aut-mei=Mitsuru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=OkuraTakafumi en-aut-sei=Okura en-aut-mei=Takafumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=KotaniKazuhiko en-aut-sei=Kotani en-aut-mei=Kazuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=KubozonoTakuro en-aut-sei=Kubozono en-aut-mei=Takuro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=YoshiokaRyo en-aut-sei=Yoshioka en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=KiharaHajime en-aut-sei=Kihara en-aut-mei=Hajime kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=HasegawaKoji en-aut-sei=Hasegawa en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=Satoh-AsaharaNoriko en-aut-sei=Satoh-Asahara en-aut-mei=Noriko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=OrimoHajime en-aut-sei=Orimo en-aut-mei=Hajime kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Internal Medicine, Mihama Hospital kn-affil= affil-num=4 en-affil=Department of Cardiovascular Medicine, Dokkyo Medical University kn-affil= affil-num=5 en-affil=Department of Cardiology, South Matsuyama Hospital kn-affil= affil-num=6 en-affil=Faculty of Pharmaceutical Sciences, Josai International University kn-affil= affil-num=7 en-affil=Center of Diabetes, Endocrine and Metabolism, Toho University Sakura Medical Center, Sakura-City kn-affil= affil-num=8 en-affil=Division of Cardiovascular Medicine (Sakura), Department of Internal Medicine, Faculty of Medicine, Toho University kn-affil= affil-num=9 en-affil=Division of Clinical Laboratory Medicine, Department of Cardiovascular and Renal Medicine, Hyogo College of Medicine kn-affil= affil-num=10 en-affil=Department of Cardiology, Yawatahama City General Hospital kn-affil= affil-num=11 en-affil=Division of Community and Family Medicine, Jichi Medical University kn-affil= affil-num=12 en-affil=Department of Cardiovascular Medicine and Hypertension, Graduate School of Medical and Dental Sciences, Kagoshima University kn-affil= affil-num=13 en-affil=Department of Cardiovascular Medicine, The Sakakibara Heart Institute of Okayama kn-affil= affil-num=14 en-affil=Department of Internal Medicine, Kihara Cardiovascular Clinic kn-affil= affil-num=15 en-affil=Division of Translational Research kn-affil= affil-num=16 en-affil=Department of Endocrinology, Metabolism, and Hypertension Research kn-affil= affil-num=17 en-affil=Clinical Research Institute, National Hospital Organization Kyoto Medical Center kn-affil= en-keyword=arterial stiffness kn-keyword=arterial stiffness en-keyword=blood pressure kn-keyword=blood pressure en-keyword=cardiovascular events kn-keyword=cardiovascular events en-keyword=pulse-wave velocity kn-keyword=pulse-wave velocity en-keyword=risk factor kn-keyword=risk factor END start-ver=1.4 cd-journal=joma no-vol=100 cd-vols= no-issue=34 article-no= start-page=e27043 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210827 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Association between higher pericoronary adipose tissue attenuation measured by coronary computed tomography angiography and nonalcoholic fatty liver disease A matched case-control study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Non-alcoholic fatty liver disease (NAFLD) is a risk factor for cardiac mortality. Pericoronary adipose tissue (PCAT) attenuation, expressed by the fat attenuation index on coronary computed tomography angiography, reflects pericoronary inflammation. We aimed to investigate the association between PCAT attenuation and NAFLD. This is a single-center cohort study comprising of patients who underwent coronary computed tomography angiography for suspected stable coronary artery disease between January and December 2020. Patient characteristics and coronary computed tomography angiography findings were analyzed between patients with NAFLD (n = 78) and a propensity score-matched cohort of patients without NAFLD (n = 78). PCAT attenuation was assessed in Hounsfield units (HU) of proximal 40-mm segments of the left anterior descending artery (LAD) and right coronary artery. The mean PCAT attenuation in LAD and right coronary artery were significantly higher in patients with NAFLD than those without NAFLD. When patients were divided into 2 groups using the median LAD-PCAT attenuation of -72.5 HU, the high PCAT attenuation group had more males (82% vs 67%, P = .028) and NAFLD patients (63% vs 37%, P = .001) compared to the low PCAT attenuation group. No differences in age, body mass index, conventional cardiovascular risk factors, or the presence of high-risk plaque were observed between the 2 groups. In the multivariate logistic analysis, NAFLD was independently associated with high PCAT attenuation (odds ratio 2.912, 95% confidence interval 1.386 to 6.118, P = .005). NAFLD is associated with high PCAT attenuation on coronary computed tomography angiography. This finding suggests that pericoronary inflammation is involved in the increased cardiac mortality in NAFLD patients. en-copyright= kn-copyright= en-aut-name=IchikawaKeishi en-aut-sei=Ichikawa en-aut-mei=Keishi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MiyoshiToru en-aut-sei=Miyoshi en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OsawaKazuhiro en-aut-sei=Osawa en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MikiTakashi en-aut-sei=Miki en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MorimitsuYusuke en-aut-sei=Morimitsu en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=AkagiNoriaki en-aut-sei=Akagi en-aut-mei=Noriaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NakashimaMitsutaka en-aut-sei=Nakashima en-aut-mei=Mitsutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of General Internal Medicine 3, Kawasaki Medical School General Medical Center kn-affil= affil-num=4 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Medical technology, Okayama University Hospital kn-affil= affil-num=6 en-affil=Department of Medical technology, Okayama University Hospital kn-affil= affil-num=7 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=coronary computed tomography angiography kn-keyword=coronary computed tomography angiography en-keyword=non-alcoholic fatty liver disease kn-keyword=non-alcoholic fatty liver disease en-keyword=perivascular coronary inflammation kn-keyword=perivascular coronary inflammation END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20211103 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effects of luseogliflozin on estimated plasma volume in patients with heart failure with preserved ejection fraction en-subtitle= kn-subtitle= en-abstract= kn-abstract=Aims
Sodium glucose co-transporter 2 inhibitors have diuretic effects in both patients with glycosuria and with natriuresis. We sought to assess the effect of luseogliflozin on estimated plasma volume (ePV) in patients with type 2 diabetes and heart failure with preserved ejection fraction (HFpEF).
Methods and results
This study was a post-hoc analysis of the MUSCAT-HF trial (UMIN000018395), a multicentre, prospective, open-label, randomized controlled trial that assessed the effect of 12 weeks of luseogliflozin (2.5 mg, once daily, n = 83) as compared with voglibose (0.2 mg, three times daily, n = 82) on the reduction in brain natriuretic peptide (BNP) in patients with type 2 diabetes and HFpEF. The analysis compared the change in ePV calculated by the Straus formula from baseline to Weeks 4, 12, and 24, using a mixed-effects model for repeated measures. We also estimated the association between changes in ePV and changes in other clinical parameters, including BNP levels. Luseogliflozin significantly reduced ePV as compared to voglibose at Week 4 {adjusted mean group-difference -6.43% [95% confidence interval (CI): -9.11 to -3.74]}, at Week 12 [-8.73% (95%CI: -11.40 to -6.05)], and at Week 24 [-11.02% (95%CI: -13.71 to -8.33)]. The effect of luseogliflozin on these parameters was mostly consistent across various patient clinical characteristics. The change in ePV at Week 12 was significantly associated with log-transformed BNP (r = 0.197, P = 0.015) and left atrial volume index (r = 0.283, P = 0.019).
Conclusions
Luseogliflozin significantly reduced ePV in patients with type 2 diabetes and HFpEF, as compared with voglibose. The reduction of intravascular volume by luseogliflozin may provide clinical benefits to patients with type 2 diabetes and HFpEF. en-copyright= kn-copyright= en-aut-name=NakashimaMitsutaka en-aut-sei=Nakashima en-aut-mei=Mitsutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MiyoshiToru en-aut-sei=Miyoshi en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=EjiriKentaro en-aut-sei=Ejiri en-aut-mei=Kentaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KiharaHajime en-aut-sei=Kihara en-aut-mei=Hajime kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HataYoshiki en-aut-sei=Hata en-aut-mei=Yoshiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NaganoToshihiko en-aut-sei=Nagano en-aut-mei=Toshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TakaishiAtsushi en-aut-sei=Takaishi en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TodaHironobu en-aut-sei=Toda en-aut-mei=Hironobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NanbaSeiji en-aut-sei=Nanba en-aut-mei=Seiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=NakamuraYoichi en-aut-sei=Nakamura en-aut-mei=Yoichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=AkagiSatoshi en-aut-sei=Akagi en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=SakuragiSatoru en-aut-sei=Sakuragi en-aut-mei=Satoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=MinagawaTaro en-aut-sei=Minagawa en-aut-mei=Taro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=KawaiYusuke en-aut-sei=Kawai en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=NishiiNobuhiro en-aut-sei=Nishii en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=FukeSoichiro en-aut-sei=Fuke en-aut-mei=Soichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=YoshikawaMasaki en-aut-sei=Yoshikawa en-aut-mei=Masaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=NakamuraKazufumi en-aut-sei=Nakamura en-aut-mei=Kazufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=MUSCAT-HF Study Investigators en-aut-sei=MUSCAT-HF Study Investigators en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Internal Medicine, Kihara Cardiovascular Clinic kn-affil= affil-num=5 en-affil=Department of Cardiology, Minamino Cardiovascular Hospital kn-affil= affil-num=6 en-affil=Department of Internal Medicine, Iwasa Hospital, kn-affil= affil-num=7 en-affil=Department of Cardiology, Mitoyo General Hospital kn-affil= affil-num=8 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Cardiology, Okayama Rosai Hospital kn-affil= affil-num=10 en-affil=Department of Cardiovascular Medicine, Specified Clinic of Soyokaze CardioVascular Medicine and Diabetes Care, Matsuyama kn-affil= affil-num=11 en-affil=Department of Internal Medicine, Akaiwa Medical Association Hospital kn-affil= affil-num=12 en-affil=Department of Cardiovascular Medicine, Iwakuni Clinical Center kn-affil= affil-num=13 en-affil=Department of Internal Medicine, Minagawa Cardiovascular Clinic kn-affil= affil-num=14 en-affil=Department of Cardiovascular Medicine, Okayama City Hospital kn-affil= affil-num=15 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=16 en-affil=Department of Cardiovascular Medicine, Japanese Red Cross Okayama Hospital kn-affil= affil-num=17 en-affil=Department of Cardiology, Fukuyama City Hospital kn-affil= affil-num=18 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=19 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=20 en-affil= kn-affil= en-keyword=Estimated plasma volume kn-keyword=Estimated plasma volume en-keyword=Heart failure with preserved ejection fraction kn-keyword=Heart failure with preserved ejection fraction en-keyword=Luseogliflozin kn-keyword=Luseogliflozin en-keyword=Sodium glucose co-transporter 2 inhibitors kn-keyword=Sodium glucose co-transporter 2 inhibitors en-keyword=Voglibose kn-keyword=Voglibose END start-ver=1.4 cd-journal=joma no-vol=11 cd-vols= no-issue=1 article-no= start-page=22812 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20211124 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Efficacy of shear wave elasticity for evaluating myocardial hypertrophy in hypertensive rats en-subtitle= kn-subtitle= en-abstract= kn-abstract=Shear wave (SW) imaging is a novel ultrasound-based technique for assessing tissue characteristics. SW elasticity may be useful to assess the severity of hypertensive left ventricular (LV) hypertrophy. This study aimed to evaluate the efficacy of SW elasticity for assessing the degree of myocardial hypertrophy using hypertensive rats. Rats were divided into hypertension group and control group. SW elasticity was measured on the excised heart. Myocardial hypertrophy was assessed histologically. LV weight was greater in hypertension group. An increase in interventricular septum and LV free wall thicknesses was observed in hypertension group. SW elasticity was significantly higher in hypertension group than in control group (14.6 +/- 4.3 kPa vs. 6.5 +/- 1.1 kPa, P < 0.01). The cross-sectional area of cardiomyocytes was larger in hypertension group than in control group (397 +/- 50 mu m(2) vs. 243 +/- 14 mu m(2), P < 0.01), and SW elasticity was positively correlated with the cross-sectional area of cardiomyocytes (R = 0.96, P < 0.01). This study showed that SW elasticity was higher in hypertensive rats and was closely correlated with the degree of myocardial hypertrophy, suggesting the efficacy of SW elasticity for estimating the severity of hypertensive LV hypertrophy. en-copyright= kn-copyright= en-aut-name=TakayaYoichi en-aut-sei=Takaya en-aut-mei=Yoichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakamuraKazufumi en-aut-sei=Nakamura en-aut-mei=Kazufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakayamaRie en-aut-sei=Nakayama en-aut-mei=Rie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OhtsukaHiroaki en-aut-sei=Ohtsuka en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=AmiokaNaofumi en-aut-sei=Amioka en-aut-mei=Naofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KondoMegumi en-aut-sei=Kondo en-aut-mei=Megumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=AkazawaKaoru en-aut-sei=Akazawa en-aut-mei=Kaoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OhnoYuko en-aut-sei=Ohno en-aut-mei=Yuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=IchikawaKeishi en-aut-sei=Ichikawa en-aut-mei=Keishi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=SaitoYukihiro en-aut-sei=Saito en-aut-mei=Yukihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=AkagiSatoshi en-aut-sei=Akagi en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=YoshidaMasashi en-aut-sei=Yoshida en-aut-mei=Masashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=MiyoshiToru en-aut-sei=Miyoshi en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Kawasaki University of Medical Welfare kn-affil= affil-num=9 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=13 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=14 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= END start-ver=1.4 cd-journal=joma no-vol=23 cd-vols= no-issue=1 article-no= start-page=25 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20211221 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Molecular Mechanisms of Cardiac Amyloidosis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Cardiac involvement has a profound effect on the prognosis of patients with systemic amyloidosis. Therapeutic methods for suppressing the production of causative proteins have been developed for ATTR amyloidosis and AL amyloidosis, which show cardiac involvement, and the prognosis has been improved. However, a method for removing deposited amyloid has not been established. Methods for reducing cytotoxicity caused by amyloid deposition and amyloid precursor protein to protect cardiovascular cells are also needed. In this review, we outline the molecular mechanisms and treatments of cardiac amyloidosis. en-copyright= kn-copyright= en-aut-name=SaitoYukihiro en-aut-sei=Saito en-aut-mei=Yukihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakamuraKazufumi en-aut-sei=Nakamura en-aut-mei=Kazufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=amyloid kn-keyword=amyloid en-keyword=cytotoxicity kn-keyword=cytotoxicity en-keyword=transthyretin kn-keyword=transthyretin en-keyword=immunoglobulin light chain kn-keyword=immunoglobulin light chain END start-ver=1.4 cd-journal=joma no-vol=2022 cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220117 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Assessment of congestion and clinical outcomes in patients with chronic heart failure using shear wave elasticity en-subtitle= kn-subtitle= en-abstract= kn-abstract=Aims The relief of congestion is essential for the prevention of worsening heart failure (HF) resulting in hospitalizations. Assessment of the degree of organ congestion in the chronic phase of HF is important for determining therapeutic strategies. The aim of this study was to evaluate the efficacy of shear wave (SW) elasticity for assessing congestion and clinical outcomes in patients with chronic HF. Methods and results We prospectively enrolled 345 consecutive patients with chronic HF who underwent SW elastography at outpatient clinic. Patients were divided into two groups according to the median value of SW elasticity: low group (SW elasticity <6.4 kPa, n = 176) and high group (SW elasticity >= 6.4 kPa, n = 169). The endpoint was cardiovascular death or hospitalization for HF. During the median follow-up period of 19 months (range: 7-36 months), cardiovascular death or hospitalization for HF occurred in 4 patients of low group and 27 patients of high group. In high group, 8 patients died, and 19 patients were hospitalized for HF. In low group, 3 patients died, and 1 patient was hospitalized. Kaplan-Meier analysis showed that the event-free survival rate was worse in high group than in low group (log-rank test, P = 0.004). After adjusting for variables, high SW elasticity was independently related to cardiac events. In multivariate regression analysis, SW elasticity was correlated with left atrial volume index, early diastolic mitral inflow velocity to mitral annular velocity ratio, and inferior vena cava diameter. Conclusions The SW elasticity reflected haemodynamic congestion in patients with chronic HF, which was related to cardiac events. en-copyright= kn-copyright= en-aut-name=NakayamaRie en-aut-sei=Nakayama en-aut-mei=Rie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakayaYoichi en-aut-sei=Takaya en-aut-mei=Yoichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakamuraKazufumi en-aut-sei=Nakamura en-aut-mei=Kazufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TakemotoRika en-aut-sei=Takemoto en-aut-mei=Rika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TohNorihisa en-aut-sei=Toh en-aut-mei=Norihisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Division of Medical Support, Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Congestion kn-keyword=Congestion en-keyword=Heart failure kn-keyword=Heart failure en-keyword=Prognosis kn-keyword=Prognosis en-keyword=Shear wave elasticity kn-keyword=Shear wave elasticity END start-ver=1.4 cd-journal=joma no-vol=6 cd-vols= no-issue=1 article-no= start-page=ytac003 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220113 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Pacemaker implantation via femoral vein and successful arrhythmia management in an elderly patient with Fontan circulation: a case report en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background The frequency of arrhythmias increases after the Fontan operation over time; atrial tachycardia (AT) and sinus node dysfunction (SND) are frequently observed. Case summary Our patient was 63-year-old woman who underwent a lateral tunnel Fontan operation for double outlet right ventricle at age 36. She experienced paroxysmal AT for 1 year, and antiarrhythmic medication was not feasible due to symptomatic SND. Computed tomography revealed a 45 mm-sized thrombus in the high right atrium (RA). The patient had three coexisting conditions: paroxysmal AT, symptomatic SND, and the right atrial thrombus, for which total cavopulmonary connection conversion and epicardial pacemaker implantation (PMI) would have been effective; however, given her age and comorbidities, surgical treatment was considered high risk. Catheter ablation was avoided because of the right atrial thrombus. Finally, a transvenous pacemaker was implanted via the right femoral vein to avoid the right atrial thrombus and severe venous tortuosity from the left subclavian vein to the RA. After PMI, the patient was prescribed amiodarone and bisoprolol for AT suppression. Atrial tachycardia occurred once in the third month after discharge. We increased the dose of amiodarone, and she has been tachycardia-free. Discussion Transvenous PMI must be considered in cases where open thoracic surgery or catheter ablation cannot be performed. This is the first report of transvenous PMI via the right femoral vein and successful AT and SND management in an elderly Fontan patient. en-copyright= kn-copyright= en-aut-name=MizunoTomofumi en-aut-sei=Mizuno en-aut-mei=Tomofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NishiiNobuhiro en-aut-sei=Nishii en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MoritaHiroshi en-aut-sei=Morita en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Cardiovascular Therapeutics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Cardiovascular Therapeutics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= en-keyword=Transvenous pacemaker kn-keyword=Transvenous pacemaker en-keyword=Fontan operation kn-keyword=Fontan operation en-keyword=Sinus node dysfunction kn-keyword=Sinus node dysfunction en-keyword=Atrial tachycardia kn-keyword=Atrial tachycardia en-keyword=Case report kn-keyword=Case report END start-ver=1.4 cd-journal=joma no-vol=21 cd-vols= no-issue=1 article-no= start-page=44 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220318 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=High pericoronary adipose tissue attenuation on computed tomography angiography predicts cardiovascular events in patients with type 2 diabetes mellitus: post-hoc analysis from a prospective cohort study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background Pericoronary adipose tissue (PCAT) attenuation on coronary computed tomography angiography (CTA) is a non-invasive biomarker for pericoronary inflammation. We aimed to investigate the prognostic value of PCAT attenuation in patients with type 2 diabetes mellitus (T2DM). Methods We included 333 T2DM patients (mean age, 66 years; male patients, 211; mean body mass index, 25 kg/m(2)) who underwent clinically indicated coronary CTA and examined their CT findings, coronary artery calcium score, pericardial fat volume, stenosis (> 50% luminal narrowing), high-risk plaque features of low-attenuation plaque and/or positive remodelling and/or spotty calcification, and PCAT attenuation. We assessed PCAT attenuation in Hounsfield units (HU) of proximal 40-mm segments of the left anterior descending artery (LAD) and right coronary artery (RCA). Cardiovascular events were defined as cardiac death, hospitalisation for acute coronary syndrome, late coronary revascularisation, and hospitalisation for heart failure. Results During a median follow-up of 4.0 years, we observed 31 cardiovascular events. LAD-PCAT attenuation was significantly higher in patients with cardiovascular events than in those without (- 68.5 +/- 6.5 HU vs - 70.8 +/- 6.1 HU, p = 0.045), whereas RCA-PCAT attenuation was not (p = 0.089). High LAD-PCAT attenuation (> - 70.7 HU; median value) was significantly associated with cardiovascular events in a model that included adverse CTA findings, such as significant stenosis and/or high-risk plaque (hazard ratio; 2.69, 95% confidence interval; 1.17-0.20, p = 0.020). After adding LAD-PCAT attenuation to the adverse CTA findings, the C-statistic and global chi-square values increased significantly from 0.65 to 0.70 (p = 0.037) and 10.9-15.0 (p = 0.043), respectively. Conclusions In T2DM patients undergoing clinically indicated coronary CTA, high LAD-PCAT attenuation could significantly predict cardiovascular events. This suggests that assessing LAD-PCAT attenuation can help physicians identify high-risk T2DM patients. en-copyright= kn-copyright= en-aut-name=IchikawaKeishi en-aut-sei=Ichikawa en-aut-mei=Keishi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MiyoshiToru en-aut-sei=Miyoshi en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OsawaKazuhiro en-aut-sei=Osawa en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NakashimaMitsutaka en-aut-sei=Nakashima en-aut-mei=Mitsutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MikiTakashi en-aut-sei=Miki en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NishiharaTakahiro en-aut-sei=Nishihara en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TodaHironobu en-aut-sei=Toda en-aut-mei=Hironobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YoshidaMasatoki en-aut-sei=Yoshida en-aut-mei=Masatoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of General Internal Medicine 3, Kawasaki Medical School General Medicine Centre kn-affil= affil-num=4 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Diabetes mellitus kn-keyword=Diabetes mellitus en-keyword=Coronary computed tomography angiography kn-keyword=Coronary computed tomography angiography en-keyword=Perivascular coronary inflammation kn-keyword=Perivascular coronary inflammation END start-ver=1.4 cd-journal=joma no-vol=79 cd-vols= no-issue=3 article-no= start-page=446 end-page=452 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20223 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Fragmented QRS as a predictor of cardiac events in patients with cardiac sarcoidosis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Multiple spikes within the QRS complex, known as fragmented QRS (fQRS), are associated with the occurrences of ventricular arrhythmic events (VAEs) in patients with Brugada syndrome and hypertrophic cardiomyopathy. However, the association between fQRS and occurrence of VAEs in patients with cardiac sarcoidosis (CS) has not been elucidated.
Methods: We evaluated the associations between fQRS and cardiac events including VAEs (non-sustained ventricular tachycardia [NSVT], sustained ventricular tachycardia [VT], and ventricular fibrillation [VF]), hospitalization for heart failure, and all cause death in 68 patients with CS (30 patients with fQRS vs. 38 patients without fQRS) over a 5-year period.
Results: Cardiac events occurred in 22 patients with fQRS and 18 patients without fQRS (73% vs. 47%, P=0.009). Of the cardiac events that occurred in CS patients, VAEs occurred more frequently in patients with fQRS than in patients without fQRS (VAEs: 70% vs. 45%, P=0.017; NSVT: 70% vs. 45%, P=0.010; VT: 43% vs. 18%, P=0.011, and VF: 6.7% vs. 2.6%, P=0.34), whereas there was no significant difference in hospitalization for heart failure or all-cause death between patients with and those without fQRS (hospitalization for heart failure: 6.7% vs. 5.3%, P=0.75; all-cause death: 6.7% vs. 5.3%, P=0.64). Multivariate analysis showed that fQRS in the baseline ECG was independently associated with VAEs (hazard ratio [HR]: 2.21, 95% confidence interval [CI]: 1.15–4.25, P=0.017).
Conclusion: fQRS is a predictor of VAEs in patients with CS.
en-copyright= kn-copyright= en-aut-name=OguraSoichiro en-aut-sei=Ogura en-aut-mei=Soichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakamuraKazufumi en-aut-sei=Nakamura en-aut-mei=Kazufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MoritaHiroshi en-aut-sei=Morita en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NakagawaKoji en-aut-sei=Nakagawa en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NishiiNobuhiro en-aut-sei=Nishii en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=AkagiSatoshi en-aut-sei=Akagi en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TohNorihisa en-aut-sei=Toh en-aut-mei=Norihisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TakayaYoichi en-aut-sei=Takaya en-aut-mei=Yoichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=YoshidaMasashi en-aut-sei=Yoshida en-aut-mei=Masashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MiyoshiToru en-aut-sei=Miyoshi en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=WatanabeAtsuyuki en-aut-sei=Watanabe en-aut-mei=Atsuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= END start-ver=1.4 cd-journal=joma no-vol=23 cd-vols= no-issue=7 article-no= start-page=3587 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Pathophysiology and Treatment of Diabetic Cardiomyopathy and Heart Failure in Patients with Diabetes Mellitus en-subtitle= kn-subtitle= en-abstract= kn-abstract=There is a close relationship between diabetes mellitus and heart failure, and diabetes is an independent risk factor for heart failure. Diabetes and heart failure are linked by not only the complication of ischemic heart disease, but also by metabolic disorders such as glucose toxicity and lipotoxicity based on insulin resistance. Cardiac dysfunction in the absence of coronary artery disease, hypertension, and valvular disease is called diabetic cardiomyopathy. Diabetes-induced hyperglycemia and hyperinsulinemia lead to capillary damage, myocardial fibrosis, and myocardial hypertrophy with mitochondrial dysfunction. Lipotoxicity with extensive fat deposits or lipid droplets is observed on cardiomyocytes. Furthermore, increased oxidative stress and inflammation cause cardiac fibrosis and hypertrophy. Treatment with a sodium glucose cotransporter 2 (SGLT2) inhibitor is currently one of the most effective treatments for heart failure associated with diabetes. However, an effective treatment for lipotoxicity of the myocardium has not yet been established, and the establishment of an effective treatment is needed in the future. This review provides an overview of heart failure in diabetic patients for the clinical practice of clinicians. en-copyright= kn-copyright= en-aut-name=NakamuraKazufumi en-aut-sei=Nakamura en-aut-mei=Kazufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MiyoshiToru en-aut-sei=Miyoshi en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YoshidaMasashi en-aut-sei=Yoshida en-aut-mei=Masashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AkagiSatoshi en-aut-sei=Akagi en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SaitoYukihiro en-aut-sei=Saito en-aut-mei=Yukihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=EjiriKentaro en-aut-sei=Ejiri en-aut-mei=Kentaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MatsuoNaoaki en-aut-sei=Matsuo en-aut-mei=Naoaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=IchikawaKeishi en-aut-sei=Ichikawa en-aut-mei=Keishi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=IwasakiKeiichiro en-aut-sei=Iwasaki en-aut-mei=Keiichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=NaitoTakanori en-aut-sei=Naito en-aut-mei=Takanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=NambaYusuke en-aut-sei=Namba en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=YoshidaMasatoki en-aut-sei=Yoshida en-aut-mei=Masatoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=SugiyamaHiroki en-aut-sei=Sugiyama en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=11 en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=12 en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=13 en-affil=Department of Internal Medicine, Okayama Saiseikai General Hospital kn-affil= affil-num=14 en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=heart failure kn-keyword=heart failure en-keyword=lipotoxicity kn-keyword=lipotoxicity en-keyword=SGLT2 inhibitor kn-keyword=SGLT2 inhibitor END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue=1 article-no= start-page=141 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220401 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Enhancement of pacing function by HCN4 overexpression in human pluripotent stem cell-derived cardiomyocytes en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background The number of patients with bradyarrhythmia and the number of patients with cardiac pacemakers are increasing with the aging population and the increase in the number of patients with heart diseases. Some patients in whom a cardiac pacemaker has been implanted experience problems such as pacemaker infection and inconvenience due to electromagnetic interference. We have reported that overexpression of HCN channels producing a pacemaker current in mouse embryonic stem cell-derived cardiomyocytes showed enhanced pacing function in vitro and in vivo. The aim of this study was to determine whether HCN4 overexpression in human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) can strengthen the pacing function of the cells. Methods Human HCN4 was transduced in the AAVS1 locus of human induced pluripotent stem cells by nucleofection and HCN4-overexpressing iPSC-CMs were generated. Gene expression profiles, frequencies of spontaneous contraction and pacing abilities of HCN4-overexpressing and non-overexpressing iPSC-CMs in vitro were compared. Results HCN4-overexpressing iPSC-CMs showed higher spontaneous contraction rates than those of non-overexpressing iPSC-CMs. They responded to an HCN channel blocker and beta adrenergic stimulation. The pacing rates against parent iPSC line-derived cardiomyocytes were also higher in HCN4-overexpressing iPSC-CMs than in non-overexpressing iPSC-CMs. Conclusions Overexpression of HCN4 showed enhancement of I-f current, spontaneous firing and pacing function in iPSC-CMs. These data suggest this transgenic cell line may be useful as a cardiac pacemaker. en-copyright= kn-copyright= en-aut-name=SaitoYukihiro en-aut-sei=Saito en-aut-mei=Yukihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakamuraKazufumi en-aut-sei=Nakamura en-aut-mei=Kazufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YoshidaMasashi en-aut-sei=Yoshida en-aut-mei=Masashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SugiyamaHiroki en-aut-sei=Sugiyama en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=AkagiSatoshi en-aut-sei=Akagi en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MiyoshiToru en-aut-sei=Miyoshi en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MoritaHiroshi en-aut-sei=Morita en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Cardiovascular Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=3 en-affil=Department of Chronic Kidney Disease and Cardiovascular Disease, Dentistry, and Pharmaceutical Science, Okayama University Graduate School of Medicine kn-affil= affil-num=4 en-affil=Department of Internal Medicine, Okayama Saiseikai General Hospital kn-affil= affil-num=5 en-affil=Department of Cardiovascular Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=6 en-affil=Department of Cardiovascular Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=7 en-affil=Department of Cardiovascular Therapeutics, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=8 en-affil=Department of Cardiovascular Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= en-keyword=Hyperpolarization-activated cyclic nucleotide-gated potassium channel 4 kn-keyword=Hyperpolarization-activated cyclic nucleotide-gated potassium channel 4 en-keyword=Human induced pluripotent stem cell-derived cardiomyocytes kn-keyword=Human induced pluripotent stem cell-derived cardiomyocytes en-keyword=Pacing kn-keyword=Pacing END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue=1 article-no= start-page=4930 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220323 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=LCZ696 ameliorates doxorubicin-induced cardiomyocyte toxicity in rats en-subtitle= kn-subtitle= en-abstract= kn-abstract=Doxorubicin (DOX)-based chemotherapy induces cardiotoxicity, which is considered the main bottleneck for its clinical application. In this study, we investigated the potential benefit of LCZ696, an angiotensin receptor-neprilysin inhibitor against DOX-induced cardiotoxicity in rats and H9c2 cells and determined whether the mechanism underlying any such effects involves its antioxidant activity. Male Sprague-Dawley rats were randomly separated into four groups, each consisting of 15 rats (DOX (1.5 mg/kg/day intraperitoneally for 10 days followed by non-treatment for 8 days); DOX + valsartan (31 mg/kg/day by gavage from day 1 to day 18); DOX + LCZ696 (68 mg/kg/day by gavage from day 1 to day 18); and control (saline intraperitoneally for 10 days). DOX-induced elevation of cardiac troponin T levels on day 18 was significantly reduced by LCZ696, but not valsartan. The DOX-induced increase in myocardial reactive oxygen species (ROS) levels determined using dihydroethidium was significantly ameliorated by LCZ696, but not valsartan, and was accompanied by the suppression of DOX-induced increase in p47phox. LCZ696 recovered the DOX-induced decrease in phosphorylation of adenosine monophosphate-activated protein kinase and increased the ratio of Bax and Bcl-2. In H9c2 cardiomyocytes, LCZ696 reduced DOX-induced mitochondrial ROS generation and improved cell viability more than valsartan. Our findings indicated that LCZ696 ameliorated DOX-induced cardiotoxicity in rat hearts in vivo and in vitro, possibly by mediating a decrease in oxidative stress. en-copyright= kn-copyright= en-aut-name=MiyoshiToru en-aut-sei=Miyoshi en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakamuraKazufumi en-aut-sei=Nakamura en-aut-mei=Kazufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AmiokaNaofumi en-aut-sei=Amioka en-aut-mei=Naofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HatipogluOmer F. en-aut-sei=Hatipoglu en-aut-mei=Omer F. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YonezawaTomoko en-aut-sei=Yonezawa en-aut-mei=Tomoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SaitoYukihiro en-aut-sei=Saito en-aut-mei=Yukihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YoshidaMasashi en-aut-sei=Yoshida en-aut-mei=Masashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=AkagiSatoshi en-aut-sei=Akagi en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Pharmacology, Kindai University kn-affil= affil-num=5 en-affil=Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= affil-num=6 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220731 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=High platelet reactivity is a predictor of left ventricular remodelling in patients with acute myocardial infarction en-subtitle= kn-subtitle= en-abstract= kn-abstract=Aims Acute myocardial infarction (AMI) is associated with left ventricular remodelling (LVR), which leads to progressive heart failure. Platelets play a pivotal role in promoting systemic and cardiac inflammatory responses during the complex process of myocardial wound healing or repair following AMI. This study aimed to investigate the impact of platelet reactivity immediately after primary percutaneous coronary intervention (PCI) on LVR in AMI patients with ST-segment (STEMI) and nonST-segment elevation (NSTEMI).
Methods and results This prospective, single-centre, observational study included 182 patients with AMI who underwent primary PCI (107 patient with STEMI and 75 patients with NSTEMI). Patients were administered a loading dose of aspirin plus prasugrel before the procedure, and platelet reactivity was assessed using the VerifyNow P2Y12 assay immediately after PCI. Echocardiography was performed before discharge and during the chronic phase (8 +/- 3 months after discharge). LVR was defined as a relative >= 20% increase in left ventricular end-diastolic volume index (LVEDVI). LVR in chronic phase was found in 34 patients (18.7%) whose platelet reactivity was significantly higher than those without LVR (259.6 +/- 61.5 and 213.1 +/- 74.8 P2Y12 reaction units [PRU]; P = 0.001). The occurrence of LVR did not differ between patients with STEMI and patients with NSTEMI (21.5% and 14.7%; P = 0.33). The optimal cut-off value of platelet reactivity for discriminating LVR was >= 245 PRU. LVEDVI significantly decreased at chronic phase in patients without high platelet reactivity (<245 PRU) (from 49.2 +/- 13.5 to 45.4 +/- 15.8 ml/m(2); P = 0.02), but not in patients with high platelet reactivity (>= d245 PRU) (P = 0.06). Multivariate logistic analysis showed that high platelet reactivity was an independent predictor of LVR after adjusting for LVEDVI before discharge (odds ratio, 4.13; 95% confidence interval, 1.85-9.79).
Conclusions High platelet reactivity measured immediately after PCI was a predictor of LVR in patients with AMI during the chronic phase. The role of antiplatelet therapy on inflammation in the myocardium is a promising area for further research. en-copyright= kn-copyright= en-aut-name=TsujiMasahiro en-aut-sei=Tsuji en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KawaiYusuke en-aut-sei=Kawai en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MiyoshiToru en-aut-sei=Miyoshi en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SaitoEisuke en-aut-sei=Saito en-aut-mei=Eisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KawamuraKohei en-aut-sei=Kawamura en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OnoTamaki en-aut-sei=Ono en-aut-mei=Tamaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TokiokaKoji en-aut-sei=Tokioka en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OheTohru en-aut-sei=Ohe en-aut-mei=Tohru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NakamuraKazufumi en-aut-sei=Nakamura en-aut-mei=Kazufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Cardiovascular Medicine, Okayama City Hospital kn-affil= affil-num=3 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Cardiovascular Medicine, Okayama City Hospital kn-affil= affil-num=5 en-affil=Department of Cardiovascular Medicine, Okayama City Hospital kn-affil= affil-num=6 en-affil=Department of Cardiovascular Medicine, Okayama City Hospital kn-affil= affil-num=7 en-affil=Department of Cardiovascular Medicine, Okayama City Hospital kn-affil= affil-num=8 en-affil=Department of Cardiovascular Medicine, Okayama City Hospital kn-affil= affil-num=9 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Myocardial infarction kn-keyword=Myocardial infarction en-keyword=Left ventricular remodelling kn-keyword=Left ventricular remodelling en-keyword=Platelet reactivity kn-keyword=Platelet reactivity en-keyword=Inflammation kn-keyword=Inflammation en-keyword=Reverse remodelling kn-keyword=Reverse remodelling en-keyword=Prasugrel kn-keyword=Prasugrel END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue=1 article-no= start-page=8776 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220524 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Impact of shear wave dispersion slope analysis for assessing the severity of myocarditis en-subtitle= kn-subtitle= en-abstract= kn-abstract=This study aimed to elucidate the utility of a novel ultrasound-based technique, shear wave dispersion slope (SWDS) analysis, which estimates tissue viscosity, for evaluating the severity of myocardial inflammation. Experimental autoimmune myocarditis (EAM) at different disease phases [3-week (acute phase): n = 10, 5-week (subacute phase): n = 9, and 7-week (late phase): n = 11] were developed in male Lewis rats. SWDS was measured in the right and the left ventricular free walls (RVFW and LVFW) under a retrograde perfusion condition. Histological myocardial inflammation was evaluated by CD68 staining. The accumulation of CD68-positive cells was severe in the myocardium of the EAM 3-week group. The median (interquartile range) SWDS of RVFW was significantly higher in the EAM 3-week group [9.9 (6.5-11.0) m/s/kHz] than in the control group [5.4 (4.5-6.8) m/s/kHz] (P = 0.034). The median SWDS of LVFW was also significantly higher in the EAM 3-week group [8.1 (6.4-11.0) m/s/kHz] than in the control group [4.4 (4.2-4.8) m/s/kHz] (P = 0.003). SWDS and the percentage of CD68-positive area showed a significant correlation in RVFW (R-2 = 0.64, P < 0.001) and LVFW (R-2 = 0.73, P < 0.001). This study showed that SWDS was elevated in ventricular walls with acute inflammation and also significantly correlated with the degree of myocardial inflammation. These results suggest the potential of SWDS in estimating the histological severity of acute myocarditis. en-copyright= kn-copyright= en-aut-name=AmiokaNaofumi en-aut-sei=Amioka en-aut-mei=Naofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakayaYoichi en-aut-sei=Takaya en-aut-mei=Yoichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakamuraKazufumi en-aut-sei=Nakamura en-aut-mei=Kazufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KondoMegumi en-aut-sei=Kondo en-aut-mei=Megumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=AkazawaKaoru en-aut-sei=Akazawa en-aut-mei=Kaoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OhnoYuko en-aut-sei=Ohno en-aut-mei=Yuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IchikawaKeishi en-aut-sei=Ichikawa en-aut-mei=Keishi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NakayamaRie en-aut-sei=Nakayama en-aut-mei=Rie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SaitoYukihiro en-aut-sei=Saito en-aut-mei=Yukihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=AkagiSatoshi en-aut-sei=Akagi en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MiyoshiToru en-aut-sei=Miyoshi en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=YoshidaMasashi en-aut-sei=Yoshida en-aut-mei=Masashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=MoritaHiroshi en-aut-sei=Morita en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Kawasaki University of Medical Welfare kn-affil= affil-num=7 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=13 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=14 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue=5 article-no= start-page=684 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220505 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Quantification of Lung Perfusion Blood Volume in Dual-Energy Computed Tomography in Patients with Pulmonary Hypertension en-subtitle= kn-subtitle= en-abstract= kn-abstract=Dual-energy computed tomography (DECT) is a promising technique for the assessment of the lung perfused blood volume (LPBV) in the lung parenchyma. This study was performed to compare the LPBV by DECT of patients with pulmonary hypertension (PH) and controls and to evaluate the association between the LPBV and the perfusion ratio derived by lung perfusion scintigraphy. This study involved 45 patients who underwent DECT (25 patients with PH and 20 controls). We measured the total LPBV and distribution of the LPBV in each lung. The total LPBV was significantly lower in the PH group than the control group (38 +/- 9 vs. 45 +/- 8 HU, p = 0.024). Significant differences were observed between the LPBV of the upper lung of the PH and control groups (34 +/- 10 vs. 47 +/- 10, p = 0.021 and 37 +/- 10 vs. 47 +/- 8, p < 0.001). A significant correlation was observed between the LPBV and the lung perfusion scintigraphy. A lower total LPBV and lower LPBV of the upper lung as detected by DECT might be specific findings of PH. en-copyright= kn-copyright= en-aut-name=UgawaSatoko en-aut-sei=Ugawa en-aut-mei=Satoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AkagiSatoshi en-aut-sei=Akagi en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=EjiriKentaro en-aut-sei=Ejiri en-aut-mei=Kentaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NakamuraKazufumi en-aut-sei=Nakamura en-aut-mei=Kazufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= en-keyword=pulmonary vascular bed kn-keyword=pulmonary vascular bed en-keyword=pulmonary arterial hypertension kn-keyword=pulmonary arterial hypertension en-keyword=lung perfusion scintigraphy kn-keyword=lung perfusion scintigraphy END start-ver=1.4 cd-journal=joma no-vol=9 cd-vols= no-issue=5 article-no= start-page=153 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220512 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effect of Early Initiation of Evolocumab on Lipoprotein(a) in Patients with Acute Myocardial Infarction: Sub-Analysis of a Randomized Controlled Trial en-subtitle= kn-subtitle= en-abstract= kn-abstract=Elevated circulating lipoprotein(a) levels are associated with an increased risk of cardiovascular events. We reported that early initiation of evolocumab, a proprotein convertase subtilisin/kexin type 9 inhibitor, in addition to a statin substantially reduced the lipoprotein(a) levels in patients with acute myocardial infarction (AMI) after primary percutaneous coronary intervention (PCI). This sub-analysis sought to investigate the effect of evolocumab on lipoprotein(a) based on baseline lipoprotein(a) levels and characteristics. This study was a prespecified analysis of a randomized controlled trial that enrolled 102 patients who underwent primary PCI for AMI. Patients received pitavastatin (2 mg/day) alone or pitavastatin and evolocumab 140 mg subcutaneously within 24 h and 2 weeks after the index PCI. The evolocumab group showed significantly suppressed lipoprotein(a) levels in patients with baseline lipoprotein(a) levels of <= 10 mg/dL, 10 < lipoprotein(a) <= 20 mg/dL, and >20 mg/dL compared with the control group, as well as similar reductions in lipoprotein(a) levels in all patient subgroups. Among these subgroups, evolocumab tended to show more favorable effects in patients with diabetes mellitus. In AMI patients, early initiation of evolocumab therapy within 24 h of primary PCI suppressed the increase in lipoprotein(a) levels within 4 weeks, regardless of baseline levels and characteristics. en-copyright= kn-copyright= en-aut-name=OkadaTomoaki en-aut-sei=Okada en-aut-mei=Tomoaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MiyoshiToru en-aut-sei=Miyoshi en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=DoiMasayuki en-aut-sei=Doi en-aut-mei=Masayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NosakaKazumasa en-aut-sei=Nosaka en-aut-mei=Kazumasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TsushimaRyu en-aut-sei=Tsushima en-aut-mei=Ryu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=UgawaSatoko en-aut-sei=Ugawa en-aut-mei=Satoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TakagiWataru en-aut-sei=Takagi en-aut-mei=Wataru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SogoMasahiro en-aut-sei=Sogo en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TakahashiMasahiko en-aut-sei=Takahashi en-aut-mei=Masahiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Cardiology, Kagawa Prefectural Central Hospital kn-affil= affil-num=4 en-affil=Department of Cardiology, Kagawa Prefectural Central Hospital kn-affil= affil-num=5 en-affil=Department of Cardiology, Kagawa Prefectural Central Hospital kn-affil= affil-num=6 en-affil=Department of Cardiology, Kagawa Prefectural Central Hospital kn-affil= affil-num=7 en-affil=Department of Cardiology, Kagawa Prefectural Central Hospital kn-affil= affil-num=8 en-affil=Department of Cardiology, Kagawa Prefectural Central Hospital kn-affil= affil-num=9 en-affil=Department of Cardiology, Kagawa Prefectural Central Hospital kn-affil= affil-num=10 en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=evolocumab kn-keyword=evolocumab en-keyword=pitavastatin kn-keyword=pitavastatin en-keyword=lipoprotein(a) kn-keyword=lipoprotein(a) en-keyword=percutaneous coronary intervention kn-keyword=percutaneous coronary intervention en-keyword=hypolipidemic agents kn-keyword=hypolipidemic agents en-keyword=myocardial infarction kn-keyword=myocardial infarction END start-ver=1.4 cd-journal=joma no-vol=11 cd-vols= no-issue=10 article-no= start-page=2838 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220517 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Association of Oxidized Low-Density Lipoprotein in Nonalcoholic Fatty Liver Disease with High-Risk Plaque on Coronary Computed Tomography Angiography: A Matched Case-Control Study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Nonalcoholic fatty liver disease (NAFLD) is a risk factor for the development of atherosclerotic cardiovascular diseases (CVDs), and oxidative stress has been proposed as a shared pathophysiological condition. This study examined whether oxidized low-density lipoprotein (LDL) is involved in the underlying mechanism that links coronary atherosclerosis and NAFLD. This study included 631 patients who underwent coronary computed tomography angiography (CTA) for suspected coronary artery disease. NAFLD was defined on CT images as a liver-to-spleen attenuation ratio of <1.0. Serum-malondialdehyde-modified LDL (MDA-LDL) and coronary CTA findings were analyzed in a propensity-score-matched cohort of patients with NAFLD (n = 150) and those without NAFLD (n = 150). This study analyzed 300 patients (median age, 65 years; 64% men). Patients with NAFLD had higher MDA-LDL levels and a greater presence of CTA-verified high-risk plaques than those without NAFLD. In the multivariate linear regression analysis, MDA-LDL was independently associated with NAFLD (beta = 11.337, p = 0.005) and high-risk plaques (beta = 12.487, p = 0.007). Increased MDA-LDL may be a mediator between NAFLD and high-risk coronary plaque on coronary CTA. Increased oxidative stress in NAFLD, as assessed using MDA-LDL, may be involved in the development of CVDs. en-copyright= kn-copyright= en-aut-name=NishiharaTakahiro en-aut-sei=Nishihara en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MiyoshiToru en-aut-sei=Miyoshi en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IchikawaKeishi en-aut-sei=Ichikawa en-aut-mei=Keishi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OsawaKazuhiro en-aut-sei=Osawa en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NakashimaMitsutaka en-aut-sei=Nakashima en-aut-mei=Mitsutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MikiTakashi en-aut-sei=Miki en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of General Internal Medicine 3, Kawasaki Medical School General Medicine Centre kn-affil= affil-num=5 en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=low-density lipoprotein cholesterol kn-keyword=low-density lipoprotein cholesterol en-keyword=nonalcoholic fatty liver disease kn-keyword=nonalcoholic fatty liver disease en-keyword=coronary computed tomography angiography kn-keyword=coronary computed tomography angiography en-keyword=high-risk plaque kn-keyword=high-risk plaque en-keyword=oxidized lipoprotein kn-keyword=oxidized lipoprotein END start-ver=1.4 cd-journal=joma no-vol=125 cd-vols= no-issue=3 article-no= start-page=211 end-page=216 dt-received= dt-revised= dt-accepted= dt-pub-year=2013 dt-pub=20131202 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Balloon pulmonary angioplasty for inoperable patients with chronic thromboembolic pulmonary hypertension kn-title=外科的手術が不可能な慢性血栓塞栓性肺高血圧症に対する 内科的バルーン肺動脈形成術の新手法 en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=MizoguchiHiroki en-aut-sei=Mizoguchi en-aut-mei=Hiroki kn-aut-name=溝口博喜 kn-aut-sei=溝口 kn-aut-mei=博喜 aut-affil-num=1 ORCID= en-aut-name=OgawaAiko en-aut-sei=Ogawa en-aut-mei=Aiko kn-aut-name=小川愛子 kn-aut-sei=小川 kn-aut-mei=愛子 aut-affil-num=2 ORCID= en-aut-name=MunemasaMitsuru en-aut-sei=Munemasa en-aut-mei=Mitsuru kn-aut-name=宗政充 kn-aut-sei=宗政 kn-aut-mei=充 aut-affil-num=3 ORCID= en-aut-name=MikouchiHiroshi en-aut-sei=Mikouchi en-aut-mei=Hiroshi kn-aut-name=三河内弘 kn-aut-sei=三河内 kn-aut-mei=弘 aut-affil-num=4 ORCID= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name=伊藤浩 kn-aut-sei=伊藤 kn-aut-mei=浩 aut-affil-num=5 ORCID= en-aut-name=MatsubaraHiromi en-aut-sei=Matsubara en-aut-mei=Hiromi kn-aut-name=松原広己 kn-aut-sei=松原 kn-aut-mei=広己 aut-affil-num=6 ORCID= affil-num=1 en-affil= kn-affil=国立病院機構岡山医療センター 循環器科 affil-num=2 en-affil= kn-affil=国立病院機構岡山医療センター 循環器科 affil-num=3 en-affil= kn-affil=国立病院機構岡山医療センター 循環器科 affil-num=4 en-affil= kn-affil=国立病院機構岡山医療センター 循環器科 affil-num=5 en-affil= kn-affil=岡山大学大学院医歯薬学総合研究科 循環器内科学 affil-num=6 en-affil= kn-affil=国立病院機構岡山医療センター 循環器科 en-keyword=pulmonary hypertension kn-keyword=pulmonary hypertension en-keyword=intravascular ultrasound kn-keyword=intravascular ultrasound en-keyword=chronic thromboembolism kn-keyword=chronic thromboembolism en-keyword=reperfusion pulmonary injury kn-keyword=reperfusion pulmonary injury en-keyword=pulmomary edema kn-keyword=pulmomary edema END start-ver=1.4 cd-journal=joma no-vol=19 cd-vols= no-issue=4 article-no= start-page=E35 end-page=E39 dt-received= dt-revised= dt-accepted= dt-pub-year=2013 dt-pub=201308 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Serum cystatin C as a biomarker of cardiac diastolic dysfunction in patients with cardiac disease and preserved ejection fraction en-subtitle= kn-subtitle= en-abstract= kn-abstract=Diastolic dysfunction of the heart is correlated with cardiac mortality. Serum cystatin C (CysC) is an endogenous marker of kidney function. It is not clear whether serum CysC is associated with diastolic dysfunction in patients with varying cardiac conditions with concomitant diastolic abnormalities and preserved ejection fraction (EF). The authors measured serum CysC levels in patients with cardiac diseases and examined the relationships between serum CysC levels and diastolic function. Serum CysC was measured and echocardiography was performed in 124 consecutive patients with cardiac diseases. Transmitral flow (TMF) patterns surrogating diastolic function were categorized into two groups: a normal group and an abnormal group. Serum CysC and BNP showed a significant positive correlation. There were no significant differences in serum CysC among those cardiac diseases. Seventy-eight patients with cardiac disease and preserved EF (left ventricular EF ≥50%) and without renal dysfunction (estimated glomerular filtration rate ≥60 mL/minute/1.73 m(2) ) were examined. Multivariate linear regression analysis demonstrated that left atrium diameter and abnormal TMF patterns were independent determinants of serum CysC. Furthermore, patients with elevated serum CysC levels had poor prognosis. Serum CysC is associated with diastolic dysfunction in patients with various cardiac diseases and preserved EF. Serum CysC might be a biomarker of cardiac diastolic dysfunction in patients with preserved EF. en-copyright= kn-copyright= en-aut-name=NosakaKazumasa en-aut-sei=Nosaka en-aut-mei=Kazumasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakamuraKazufumi en-aut-sei=Nakamura en-aut-mei=Kazufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KusanoKengo en-aut-sei=Kusano en-aut-mei=Kengo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TohNorihisa en-aut-sei=Toh en-aut-mei=Norihisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TadaTakeshi en-aut-sei=Tada en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MiyoshiToru en-aut-sei=Miyoshi en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=DoiMasayuki en-aut-sei=Doi en-aut-mei=Masayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KohnoKunihisa en-aut-sei=Kohno en-aut-mei=Kunihisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MoritaHiroshi en-aut-sei=Morita en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil= kn-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=2 en-affil= kn-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=3 en-affil= kn-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=4 en-affil= kn-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=5 en-affil= kn-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=6 en-affil= kn-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=7 en-affil= kn-affil=Department of Cardiology, Kagawa Prefectural Central Hospital affil-num=8 en-affil= kn-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=9 en-affil= kn-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=10 en-affil= kn-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences END start-ver=1.4 cd-journal=joma no-vol=2013 cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2013 dt-pub=2013 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Dual Antiplatelet Therapy Can Be Discontinued at Three Months after Implantation of Zotarolimus-Eluting Stent in Patients with Coronary Artery Disease en-subtitle= kn-subtitle= en-abstract= kn-abstract=Dual antiplatelet therapy (DAPT) after percutaneous coronary intervention increases the risk of bleeding. We studied the safety and clinical outcomes of switching from DAPT to aspirin monotherapy at 3 months after ZES implantation. We retrospectively evaluated 168 consecutive patients with coronary artery disease who had been implanted with a ZES from June 2009 through March 2010. After excluding 40 patients according to exclusion criteria such as myocardial infarction, 128 patients were divided into a 3-month DAPT group (67 patients, 88 lesions) and a 12-month conventional DAPT group (61 patients, 81 lesions). Coronary angiographic followup and clinical followup were conducted at more than 8 months and at 12 months after ZES implantation, respectively. Minor and major bleeding events, stent thrombosis (ST), and major adverse cardiac events (MACE) (death, myocardial infarction, cerebrovascular accident, target lesion revascularization, and target vessel revascularization) were evaluated. There were no statistically significant differences in the incidences of ST and MACE between the two groups. The incidence of bleeding events was significantly lower in the 3-month group than in the 12-month group (1.5% versus 11.5%, ). DAPT can be safely discontinued at 3 months after ZES implantation, which reduces bleeding risk. en-copyright= kn-copyright= en-aut-name=WadaTadashi en-aut-sei=Wada en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakahamaMakoto en-aut-sei=Nakahama en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TodaHironobu en-aut-sei=Toda en-aut-mei=Hironobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=WatanabeAtsuyuki en-aut-sei=Watanabe en-aut-mei=Atsuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HashimotoKatsushi en-aut-sei=Hashimoto en-aut-mei=Katsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TerasakaRitsuko en-aut-sei=Terasaka en-aut-mei=Ritsuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NakamuraKazufumi en-aut-sei=Nakamura en-aut-mei=Kazufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YamadaNobuyuki en-aut-sei=Yamada en-aut-mei=Nobuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil= kn-affil=Department of Cardiology, Fukuyama City Hospital affil-num=2 en-affil= kn-affil=Department of Cardiology, Fukuyama City Hospital affil-num=3 en-affil= kn-affil=Department of Cardiology, Fukuyama City Hospital affil-num=4 en-affil= kn-affil=Department of Cardiology, Fukuyama City Hospital affil-num=5 en-affil= kn-affil=Department of Cardiology, Fukuyama City Hospital affil-num=6 en-affil= kn-affil=Department of Cardiology, Fukuyama City Hospital affil-num=7 en-affil= kn-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=8 en-affil= kn-affil=Department of Cardiology, Fukuyama City Hospital affil-num=9 en-affil= kn-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences END start-ver=1.4 cd-journal=joma no-vol=8 cd-vols= no-issue=2 article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2013 dt-pub=20130219 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A Decreased Level of Serum Soluble Klotho Is an Independent Biomarker Associated with Arterial Stiffness in Patients with Chronic Kidney Disease en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Klotho was originally identified in a mutant mouse strain unable to express the gene that consequently showed shortened life spans. In humans, low serum Klotho levels are related to the prevalence of cardiovascular diseases in community-dwelling adults. However, it is unclear whether the serum Klotho levels are associated with signs of vascular dysfunction such as arterial stiffness, a major determinant of prognosis, in human subjects with chronic kidney disease (CKD). Methods: We determined the levels of serum soluble Klotho in 114 patients with CKD using ELISA and investigated the relationship between the level of Klotho and markers of CKD-mineral and bone disorder (CKD-MBD) and various types of vascular dysfunction, including flow-mediated dilatation, a marker of endothelial dysfunction, ankle-brachial pulse wave velocity (baPWV), a marker of arterial stiffness, intima-media thickness (IMT), a marker of atherosclerosis, and the aortic calcification index (ACI), a marker of vascular calcification. Results: The serum Klotho level significantly correlated with the 1,25-dihydroxyvitamin D level and inversely correlated with the parathyroid hormone level and the fractional excretion of phosphate. There were significant decreases in serum Klotho in patients with arterial stiffness defined as baPWV >= 1400 cm/sec, atherosclerosis defined as maximum IMT >= 1.1 mm and vascular calcification scores of ACI>0%. The serum Klotho level was a significant determinant of arterial stiffness, but not endothelial dysfunction, atherosclerosis or vascular calcification, in the multivariate analysis in either metabolic model, the CKD model or the CKD-MBD model. The adjusted odds ratio of serum Klotho for the baPWV was 0.60 (p = 0.0075). Conclusions: Decreases in the serum soluble Klotho levels are independently associated with signs of vascular dysfunction such as arterial stiffness in patients with CKD. Further research exploring whether therapeutic approaches to maintain or elevate the Klotho level could improve arterial stiffness in CKD patients is warranted. en-copyright= kn-copyright= en-aut-name=KitagawaMasashi en-aut-sei=Kitagawa en-aut-mei=Masashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SugiyamaHitoshi en-aut-sei=Sugiyama en-aut-mei=Hitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MorinagaHiroshi en-aut-sei=Morinaga en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=InoueTatsuyuki en-aut-sei=Inoue en-aut-mei=Tatsuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakiueKeiichi en-aut-sei=Takiue en-aut-mei=Keiichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OgawaAyu en-aut-sei=Ogawa en-aut-mei=Ayu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YamanariToshio en-aut-sei=Yamanari en-aut-mei=Toshio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KikumotoYoko en-aut-sei=Kikumoto en-aut-mei=Yoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=UchidaHaruhito Adam en-aut-sei=Uchida en-aut-mei=Haruhito Adam kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KitamuraShinji en-aut-sei=Kitamura en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MaeshimaYohei en-aut-sei=Maeshima en-aut-mei=Yohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=NakamuraKazufumi en-aut-sei=Nakamura en-aut-mei=Kazufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=MakinoHirofumi en-aut-sei=Makino en-aut-mei=Hirofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= affil-num=1 en-affil= kn-affil=Okayama Univ, Dept Med & Clin Sci, Grad Sch Med Dent & Pharmaceut Sci affil-num=2 en-affil= kn-affil=Okayama Univ, Dept Med & Clin Sci, Grad Sch Med Dent & Pharmaceut Sci affil-num=3 en-affil= kn-affil=Okayama Univ, Dept Med & Clin Sci, Grad Sch Med Dent & Pharmaceut Sci affil-num=4 en-affil= kn-affil=Okayama Univ, Dept Med & Clin Sci, Grad Sch Med Dent & Pharmaceut Sci affil-num=5 en-affil= kn-affil=Okayama Univ, Dept Med & Clin Sci, Grad Sch Med Dent & Pharmaceut Sci affil-num=6 en-affil= kn-affil=Okayama Univ, Dept Med & Clin Sci, Grad Sch Med Dent & Pharmaceut Sci affil-num=7 en-affil= kn-affil=Okayama Univ, Dept Med & Clin Sci, Grad Sch Med Dent & Pharmaceut Sci affil-num=8 en-affil= kn-affil=Okayama Univ, Dept Med & Clin Sci, Grad Sch Med Dent & Pharmaceut Sci affil-num=9 en-affil= kn-affil=Okayama Univ, Dept Med & Clin Sci, Grad Sch Med Dent & Pharmaceut Sci affil-num=10 en-affil= kn-affil=Okayama Univ, Dept Med & Clin Sci, Grad Sch Med Dent & Pharmaceut Sci affil-num=11 en-affil= kn-affil=Okayama Univ, Dept Med & Clin Sci, Grad Sch Med Dent & Pharmaceut Sci affil-num=12 en-affil= kn-affil=Okayama Univ, Dept Cardiovasc Med, Grad Sch Med Dent & Pharmaceut Sci affil-num=13 en-affil= kn-affil=Okayama Univ, Dept Cardiovasc Med, Grad Sch Med Dent & Pharmaceut Sci affil-num=14 en-affil= kn-affil=Okayama Univ, Dept Med & Clin Sci, Grad Sch Med Dent & Pharmaceut Sci END start-ver=1.4 cd-journal=joma no-vol=19 cd-vols= no-issue=1 article-no= start-page=149 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200926 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Combination therapy with pemafibrate (K-877) and pitavastatin improves vascular endothelial dysfunction in dahl/salt-sensitive rats fed a high-salt and high-fat diet en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background Statins suppress the progression of atherosclerosis by reducing low-density lipoprotein (LDL) cholesterol levels. Pemafibrate (K-877), a novel selective peroxisome proliferator-activated receptor alpha modulator, is expected to reduce residual risk factors including high triglycerides (TGs) and low high-density lipoprotein (HDL) cholesterol during statin treatment. However, it is not known if statin therapy with add-on pemafibrate improves the progression of atherosclerosis. The aim of this study was to assess the effect of combination therapy with pitavastatin and pemafibrate on lipid profiles and endothelial dysfunction in hypertension and insulin resistance model rats. Methods Seven-week-old male Dahl salt-sensitive (DS) rats were divided into the following five treatment groups (normal diet (ND) plus vehicle, high-salt and high-fat diet (HD) plus vehicle, HD plus pitavastatin (0.3 mg/kg/day), HD plus pemafibrate (K-877) (0.5 mg/kg/day), and HD plus combination of pitavastatin and pemafibrate) and treated for 12 weeks. At 19 weeks, endothelium-dependent relaxation of the thoracic aorta in response to acetylcholine was evaluated. Results After feeding for 12 weeks, systolic blood pressure and plasma levels of total cholesterol were significantly higher in the HD-vehicle group compared with the ND-vehicle group. Combination therapy with pitavastatin and pemafibrate significantly reduced systolic blood pressure, TG levels, including total, chylomicron (CM), very LDL (VLDL), HDL-TG, and cholesterol levels, including total, CM, VLDL, and LDL-cholesterol, compared with vehicle treatment. Acetylcholine caused concentration-dependent relaxation of thoracic aorta rings that were pre-contracted with phenylephrine in all rats. Relaxation rates in the HD-vehicle group were significantly lower compared with the ND-vehicle group. Relaxation rates in the HD-combination of pitavastatin and pemafibrate group significantly increased compared with the HD-vehicle group, although neither medication alone ameliorated relaxation rates significantly. Western blotting experiments showed increased phosphorylated endothelial nitric oxide synthase protein expression in aortas from rats in the HD-pemafibrate group and the HD-combination group compared with the HD-vehicle group. However, the expression levels did not respond significantly to pitavastatin alone. Conclusions Combination therapy with pitavastatin and pemafibrate improved lipid profiles and endothelial dysfunction in hypertension and insulin resistance model rats. Pemafibrate as an add-on strategy to statins may be useful for preventing atherosclerosis progression. en-copyright= kn-copyright= en-aut-name=YoshidaMasatoki en-aut-sei=Yoshida en-aut-mei=Masatoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakamuraKazufumi en-aut-sei=Nakamura en-aut-mei=Kazufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MiyoshiToru en-aut-sei=Miyoshi en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YoshidaMasashi en-aut-sei=Yoshida en-aut-mei=Masashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KondoMegumi en-aut-sei=Kondo en-aut-mei=Megumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=AkazawaKaoru en-aut-sei=Akazawa en-aut-mei=Kaoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KimuraTomonari en-aut-sei=Kimura en-aut-mei=Tomonari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OhtsukaHiroaki en-aut-sei=Ohtsuka en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=OhnoYuko en-aut-sei=Ohno en-aut-mei=Yuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MiuraDaiji en-aut-sei=Miura en-aut-mei=Daiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Basic and Clinical Medicine, Nagano College of Nursing kn-affil= affil-num=11 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Pemafibrate kn-keyword=Pemafibrate en-keyword=Statin kn-keyword=Statin en-keyword=Endothelial function kn-keyword=Endothelial function END start-ver=1.4 cd-journal=joma no-vol=86 cd-vols= no-issue=8 article-no= start-page=1312 end-page=1318 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=2022725 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Overview of the 86th Annual Scientific Meeting of the Japanese Circulation Society ― Cardiology Spreading Its Wings ― en-subtitle= kn-subtitle= en-abstract= kn-abstract=The 86th Annual Scientific Meeting of the Japanese Circulation Society was held in a web-based format on March 11-13, 2022. In accordance with the internationalization policy of the JCS, the meeting was held with the Asian Pacific Society of Cardiology Congress 2022. The main theme was "Cardiology Spreading its Wings". The number of patients with heart failure and other cardiovascular diseases is increasing dramatically, and the fields dealt with by cardiovascular medicine are also greatly expanding. This conference was both intellectually satisfying and exciting for all participants, who numbered over 14,900. The meeting was completed with great success, and the enormous amount of cooperation and support from all involved was greatly appreciated. en-copyright= kn-copyright= en-aut-name=NakamuraKazufumi en-aut-sei=Nakamura en-aut-mei=Kazufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MiyoshiToru en-aut-sei=Miyoshi en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AkagiSatoshi en-aut-sei=Akagi en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TohNorihisa en-aut-sei=Toh en-aut-mei=Norihisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SaitoYukihiro en-aut-sei=Saito en-aut-mei=Yukihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TakayaYoichi en-aut-sei=Takaya en-aut-mei=Yoichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YoshidaMasatoki en-aut-sei=Yoshida en-aut-mei=Masatoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NakagawaKoji en-aut-sei=Nakagawa en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KawadaSatoshi en-aut-sei=Kawada en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=TodaHironobu en-aut-sei=Toda en-aut-mei=Hironobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MikiTakashi en-aut-sei=Miki en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=NakayamaRie en-aut-sei=Nakayama en-aut-mei=Rie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=YokohamaFumi en-aut-sei=Yokohama en-aut-mei=Fumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=IchikawaKeishi en-aut-sei=Ichikawa en-aut-mei=Keishi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=YoshidaMasashi en-aut-sei=Yoshida en-aut-mei=Masashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=TaniyamaMakiko en-aut-sei=Taniyama en-aut-mei=Makiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=NishiiNobuhiro en-aut-sei=Nishii en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=AkagiTeiji en-aut-sei=Akagi en-aut-mei=Teiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=MoritaHiroshi en-aut-sei=Morita en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=13 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=14 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=15 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=16 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=17 en-affil=Department of Cardiovascular Therapeutics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=18 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=19 en-affil=Department of Cardiovascular Therapeutics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=20 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Cardiology kn-keyword=Cardiology en-keyword=Heart failure kn-keyword=Heart failure en-keyword=Internationalization kn-keyword=Internationalization END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue=1 article-no= start-page=15449 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220914 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effects of luseogliflozin and voglibose on high-risk lipid profiles and inflammatory markers in diabetes patients with heart failure en-subtitle= kn-subtitle= en-abstract= kn-abstract=Sodium-glucose cotransporter 2 inhibitors could reduce cardiovascular events in patients with heart failure irrespective of diabetes status. In this prespecified sub-analysis of randomised-controlled trial, we investigated the efficacy of luseogliflozin (2.5 mg daily), a sodium-glucose cotransporter 2 inhibitor, with that of voglibose (0.6 mg daily), an alpha-glucosidase inhibitor, on high-risk lipid profile and inflammatory markers in patients with type-2 diabetes and heart failure. Among the 157 patients studied, there were no significant differences in the mean malondialdehyde LDL or small-dense LDL cholesterol levels between the luseogliflozin and voglibose groups (percent change: 0.2% vs. - 0.6%, p = 0.93; - 1.7% vs. - 8.6%, p= 0.21) after 12 weeks in comparison to levels at the baseline. No significant difference was observed between the two groups in the adiponectin and high-sensitivity C-reactive protein levels after 12 weeks compared to the baseline levels (percent change, - 1.6% vs. - 4.0% and 22.5% vs. 10.0%; p = 0.52 and p = 0.55, respectively). In conclusion, in patients with type-2 diabetes and heart failure, compared to voglibose, luseogliflozin did not significantly improve the high-risk lipoprotein profile including malondialdehyde LDL and small-dense LDL cholesterol or the levels of inflammatory markers, including adiponectin and high-sensitivity C-reactive protein. en-copyright= kn-copyright= en-aut-name=EjiriKentaro en-aut-sei=Ejiri en-aut-mei=Kentaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MiyoshiToru en-aut-sei=Miyoshi en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KiharaHajime en-aut-sei=Kihara en-aut-mei=Hajime kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HataYoshiki en-aut-sei=Hata en-aut-mei=Yoshiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NaganoToshihiko en-aut-sei=Nagano en-aut-mei=Toshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TakaishiAtsushi en-aut-sei=Takaishi en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TodaHironobu en-aut-sei=Toda en-aut-mei=Hironobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NambaSeiji en-aut-sei=Namba en-aut-mei=Seiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NakamuraYoichi en-aut-sei=Nakamura en-aut-mei=Yoichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=AkagiSatoshi en-aut-sei=Akagi en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=SakuragiSatoru en-aut-sei=Sakuragi en-aut-mei=Satoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=MinagawaTaro en-aut-sei=Minagawa en-aut-mei=Taro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=KawaiYusuke en-aut-sei=Kawai en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=NishiiNobuhiro en-aut-sei=Nishii en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=FukeSoichiro en-aut-sei=Fuke en-aut-mei=Soichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=YoshikawaMasaki en-aut-sei=Yoshikawa en-aut-mei=Masaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=NakamuraKazufumi en-aut-sei=Nakamura en-aut-mei=Kazufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=The MUSCAT-HF Study Investigators en-aut-sei=The MUSCAT-HF Study Investigators en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Internal Medicine, Kihara Cardiovascular Clinic kn-affil= affil-num=4 en-affil=Department of Cardiology, Minamino Cardiovascular Hospital kn-affil= affil-num=5 en-affil=Department of Internal Medicine, Iwasa Hospital kn-affil= affil-num=6 en-affil=Department of Cardiology, Mitoyo General Hospital kn-affil= affil-num=7 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Cardiology, Okayama Rosai Hospital kn-affil= affil-num=9 en-affil=Department of Cardiovascular Medicine, Specifed Clinic of Soyokaze Cardiovascular Medicine and Diabetes Care kn-affil= affil-num=10 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Cardiovascular Medicine, Iwakuni Clinical Center kn-affil= affil-num=12 en-affil=Department of Internal Medicine, Minagawa Cardiovascular Clinic kn-affil= affil-num=13 en-affil=Department of Cardiovascular Medicine, Okayama City Hospital kn-affil= affil-num=14 en-affil=Department of Internal Medicine, Yoshinaga Hospital kn-affil= affil-num=15 en-affil=Department of Cardiovascular Medicine, Japanese Red Cross Okayama Hospital kn-affil= affil-num=16 en-affil=Department of Cardiology, Fukuyama City Hospital kn-affil= affil-num=17 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=18 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=19 en-affil= kn-affil= END start-ver=1.4 cd-journal=joma no-vol=9 cd-vols= no-issue=10 article-no= start-page=329 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220928 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The Association of Triglyceride to High-Density Lipoprotein Cholesterol Ratio with High-Risk Coronary Plaque Characteristics Determined by CT Angiography and Its Risk of Coronary Heart Disease en-subtitle= kn-subtitle= en-abstract= kn-abstract=The triglyceride to high-density lipoprotein cholesterol (TG/HDL-C) ratio is an independent risk index for cardiovascular events. This study aimed to evaluate the association between TG/HDL-C ratio and coronary plaque characteristics as seen on coronary computed tomography angiography (CCTA) and the corresponding increase in the likelihood of cardiovascular events. A total of 935 patients who underwent CCTA for suspected coronary artery disease (CAD) were included. High-risk plaques (HRP) were defined based on three characteristics: positive remodeling, low-density plaques, and spotty calcification. Significant stenosis was defined as luminal narrowing of >70%. Patients with a higher TG/HDL-C ratio showed significantly greater prevalence of HRP and significant stenosis than patients with low TG/HDL-C ratios (p < 0.01). Multivariate logistic analysis demonstrated that the TG/HDL-C ratio was significantly associated with the presence of HRP (p < 0.01) but not with significant coronary stenosis (p = 0.24). During the median follow-up period of 4.1 years, 26 cardiovascular events including cardiovascular death and acute coronary syndrome occurred. The highest TG/HDL-C tertile was associated with cardiovascular events, with the lowest TG/HDL-C tertile as the reference (hazard ratio, 3.75; 95% confidence interval, 1.04-13.50). A high TG/HDL-C ratio is associated with the presence of CCTA-verified HRP, which can lead to cardiovascular events in patients with suspected CAD. en-copyright= kn-copyright= en-aut-name=KoideYuji en-aut-sei=Koide en-aut-mei=Yuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MiyoshiToru en-aut-sei=Miyoshi en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NishiharaTakahiro en-aut-sei=Nishihara en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NakashimaMitsutaka en-aut-sei=Nakashima en-aut-mei=Mitsutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=IchikawaKeishi en-aut-sei=Ichikawa en-aut-mei=Keishi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MikiTakashi en-aut-sei=Miki en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OsawaKazuhiro en-aut-sei=Osawa en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of General Internal Medicine 3, Kawasaki Medical School General Medicine Center kn-affil= affil-num=8 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=triglyceride kn-keyword=triglyceride en-keyword=high density lipoprotein kn-keyword=high density lipoprotein en-keyword=coronary artery disease kn-keyword=coronary artery disease en-keyword=computed tomography kn-keyword=computed tomography END start-ver=1.4 cd-journal=joma no-vol=10 cd-vols= no-issue=11 article-no= start-page=e06552 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20221106 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A hyperechoic mass in femoral vein en-subtitle= kn-subtitle= en-abstract= kn-abstract=Here, we present a case of fat embolism syndrome (FES) in which ultrasound sonography and computed tomography successfully visualized fat embolus in the femoral vein. A multimodality approach was particularly useful for early and specific diagnosis. en-copyright= kn-copyright= en-aut-name=KakuNaoko en-aut-sei=Kaku en-aut-mei=Naoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SugiyamaHiroki en-aut-sei=Sugiyama en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakamuraKazufumi en-aut-sei=Nakamura en-aut-mei=Kazufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FurutaniTomoki en-aut-sei=Furutani en-aut-mei=Tomoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HongoTakashi en-aut-sei=Hongo en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Internal Medicine, Okayama Saiseikai General Hospital kn-affil= affil-num=2 en-affil=Department of Internal Medicine, Okayama Saiseikai General Hospital kn-affil= affil-num=3 en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Orthopedic surgery, Okayama Saiseikai General Hospital kn-affil= affil-num=5 en-affil=Department of Emergency medicine, Okayama Saiseikai General Hospital kn-affil= affil-num=6 en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=bone fractures kn-keyword=bone fractures en-keyword=fat embolism syndrome kn-keyword=fat embolism syndrome END start-ver=1.4 cd-journal=joma no-vol=17 cd-vols= no-issue=11 article-no= start-page=e0278172 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20221130 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Left atrial appendage morphology with the progression of atrial fibrillation en-subtitle= kn-subtitle= en-abstract= kn-abstract=Left atrial appendage (LAA) size is crucial for determining the indication of transcatheter LAA closure. The aim of this study was to evaluate the differences in LAA morphology according to the types of atrial fibrillation (AF). A total of 299 patients (mean age: 67 +/- 13 years) who underwent transesophageal echocardiography (TEE) were included. Patients were classified into non-AF (n = 64), paroxysmal AF (n = 86), persistent AF (n = 87), or long-standing persistent AF (n = 62). LAA morphology, including LAA ostial diameter and depth, was assessed using TEE. Patients with long-standing persistent AF had larger LAA ostial diameter and depth and lower LAA flow velocity. The maximum LAA ostial diameter was 19 +/- 4 mm in patients with non-AF, 21 +/- 4 mm in patients with paroxysmal AF, 23 +/- 5 mm in patients with persistent AF, and 26 +/- 5 mm in patients with long-standing persistent AF. LAA ostial diameter was increased by 2 or 3 mm with the progression of AF. LAA ostial diameter was correlated with LA volume index (R = 0.37, P < 0.01) and the duration of continuous AF (R = 0.30, P < 0.01), but not with age or the period from the onset of AF. In conclusion, LAA size was increased with the progression of AF. en-copyright= kn-copyright= en-aut-name=TakayaYoichi en-aut-sei=Takaya en-aut-mei=Yoichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakayamaRie en-aut-sei=Nakayama en-aut-mei=Rie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YokohamaFumi en-aut-sei=Yokohama en-aut-mei=Fumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TohNorihisa en-aut-sei=Toh en-aut-mei=Norihisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NakagawaKoji en-aut-sei=Nakagawa en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MiyamotoMasakazu en-aut-sei=Miyamoto en-aut-mei=Masakazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= END start-ver=1.4 cd-journal=joma no-vol=24 cd-vols= no-issue=3 article-no= start-page=1921 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=202302 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Microcalcification and Tc-99m-Pyrophosphate Uptake without Increased Bone Metabolism in Cardiac Tissue from Patients with Transthyretin Cardiac Amyloidosis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Transthyretin cardiac amyloidosis (ATTR-CA) is characterized by high Tc-99m-labeled bone tracer uptake in the heart. However, the mechanism of bone tracer uptake into the heart remains controversial. Since bone tracer uptake into metastatic bone tumors is thought to be associated with increased bone metabolism, we examined Tc-99m-pyrophosphate (PYP) scintigraphy findings, endomyocardial biopsy (EMB) tissue findings, and the expression of bone metabolism-related genes in the EMB tissues in patients with ATTR-CA, amyloid light-chain cardiac amyloidosis (AL-CA), and noncardiac amyloidosis (non-CA) in this study. The uptake of Tc-99m-PYP in the heart was significantly higher in the ATTR-CA patients than in the AL-CA and non-CA patients. A higher percentage of ATTR-CA EMB tissue showed von Kossa-positive microparticles: ATTR-CA, 62%; AL-CA, 33%; and non-CA, 0%. Calcified microparticles were identified using transmission electron microscopy. However, none of the osteogenic marker genes, osteoclastic marker genes, or phosphate/pyrophosphate-related genes were upregulated in the EMB samples from ATTR-CA patients compared to those from AL-CA and non-CA patients. These results suggest that active calcification-promoting mechanisms are not involved in the microcalcification observed in the heart in ATTR-CA. The mechanisms explaining bone tracer uptake in the heart, which is stronger than that in the ribs, require further investigation. en-copyright= kn-copyright= en-aut-name=MoriAtsushi en-aut-sei=Mori en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SaitoYukihiro en-aut-sei=Saito en-aut-mei=Yukihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakamuraKazufumi en-aut-sei=Nakamura en-aut-mei=Kazufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IidaToshihiro en-aut-sei=Iida en-aut-mei=Toshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=AkagiSatoshi en-aut-sei=Akagi en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YoshidaMasashi en-aut-sei=Yoshida en-aut-mei=Masashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TaniyamaMakiko en-aut-sei=Taniyama en-aut-mei=Makiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MiyoshiToru en-aut-sei=Miyoshi en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Cardiovascular Medicine, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Chronic Kidney Disease and Cardiovascular Disease, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of General Medicine, Tamano Division, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=ATTR kn-keyword=ATTR en-keyword=Tc-99m-labeled bone scintigraphy kn-keyword=Tc-99m-labeled bone scintigraphy en-keyword=calcified microparticle kn-keyword=calcified microparticle END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=3 article-no= start-page=748 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230201 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Association between Cardiovascular Disease and Liver Disease, from a Clinically Pragmatic Perspective as a Cardiologist en-subtitle= kn-subtitle= en-abstract= kn-abstract=Cardiovascular diseases and liver diseases are closely related. Non-alcoholic fatty liver disease has the same risk factors as those for atherosclerotic cardiovascular disease and may also be a risk factor for atherosclerotic cardiovascular disease on its own. Heart failure causes liver fibrosis, and liver fibrosis results in worsened cardiac preload and congestion. Although some previous reports regard the association between cardiovascular diseases and liver disease, the management strategy for liver disease in patients with cardiovascular diseases is not still established. This review summarized the association between cardiovascular diseases and liver disease. In patients with non-alcoholic fatty liver disease, the degree of liver fibrosis progresses with worsening cardiovascular prognosis. In patients with heart failure, liver fibrosis could be a prognostic marker. Liver stiffness assessed with shear wave elastography, the fibrosis-4 index, and non-alcoholic fatty liver disease fibrosis score is associated with both liver fibrosis in patients with liver diseases and worse prognosis in patients with heart failure. With the current population ageing, the importance of management for cardiovascular diseases and liver disease has been increasing. However, whether management and interventions for liver disease improve the prognosis of cardiovascular diseases has not been fully understood. Future investigations are needed. en-copyright= kn-copyright= en-aut-name=NakashimaMitsutaka en-aut-sei=Nakashima en-aut-mei=Mitsutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakamuraKazufumi en-aut-sei=Nakamura en-aut-mei=Kazufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NishiharaTakahiro en-aut-sei=Nishihara en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IchikawaKeishi en-aut-sei=Ichikawa en-aut-mei=Keishi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NakayamaRie en-aut-sei=Nakayama en-aut-mei=Rie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TakayaYoichi en-aut-sei=Takaya en-aut-mei=Yoichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TohNorihisa en-aut-sei=Toh en-aut-mei=Norihisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=AkagiSatoshi en-aut-sei=Akagi en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MiyoshiToru en-aut-sei=Miyoshi en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=AkagiTeiji en-aut-sei=Akagi en-aut-mei=Teiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=11 en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=liver disease kn-keyword=liver disease en-keyword=heart failure kn-keyword=heart failure en-keyword=atherosclerotic cardiovascular disease kn-keyword=atherosclerotic cardiovascular disease en-keyword=non-alcoholic fatty liver disease kn-keyword=non-alcoholic fatty liver disease END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230327 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Prevalence of transthyretin amyloidosis among heart failure patients with preserved ejection fraction in Japan en-subtitle= kn-subtitle= en-abstract= kn-abstract=Aims Heart failure with preserved ejection fraction (HFpEF), which is caused by wide various conditions, has become a major public health problem. Transthyretin amyloid cardiomyopathy (ATTR-CM), which is thought to be an underdiagnosed disease, can cause HFpEF. Non-invasive diagnosis using 99mTechnetium (Tc)-pyrophosphate (PYP) scintigraphy enables accurate diagnosis of ATTR-CM. The aim of this study was to clarify the prevalence and characteristics of ATTR-CM among Japanese patients with HFpEF.
Methods and results This study was a multicentre, prospective, observational study conducted in Japan. We enrolled 373 patients with HFpEF [left ventricular (LV) ejection fraction ≥50%] aged ≥65 years who were admitted to the department of cardiology from September 2018 to January 2022. A 99mTc-PYP scintigraphy scan was performed during admission in all eligible patients. Cardiac 99mTc-PYP retention was graded according to a previously reported visual scale ranging from 0 to 3 points. The scan was considered positive when it revealed moderate-to-severe 99mTc-PYP uptake (Grade 2–3) in both ventricles. Patients were divided into ATTR-CM and non-ATTR-CM patients according to positive (Grade 2–3) or negative (Grade 0–1) 99mTc-PYP scintigraphy, respectively. Medical history, blood tests, electrocardiogram, echocardiography, and magnetic resonance imaging in the two groups of patients were compared. Among the 373 patients with HFpEF, 53 patients (14.2%; 95% confidence interval: 10.7–17.7) showed positive uptake on 99mTc-PYP scintigraphy. An endomyocardial biopsy was performed in 32 patients and confirmed amyloidosis in all cases. There were no significant differences between the two groups in age, severity of heart failure as assessed by the New York Heart Association (NYHA) functional classification, renal function values, left ventricular ejection fraction, and tricuspid regurgitant pressure gradient (ATTR-CM, n = 53 vs. non-ATTR-CM, n = 320). Patients in the ATTR-CM group had a higher N-terminal pro-brain natriuretic peptide level [2314 (1081–3398) vs. 900 (415–1828), P < 0.001], higher sensitive troponin T level (0.074 ± 0.049 vs. 0.035 ± 0.038, P < 0.001), and higher mean LV maximal wall thickness [12.5 (11–14) vs. 10.5 (9.5–11.5), P < 0.001].
Conclusions ATTR-CM is an underdiagnosed disease with a significant prevalence in Japanese patients with HFpEF. This study showed that results of examinations for ATTR-CM patients appear to be worse than those for non-ATTR-CM patients, but clinical severities of heart failure as assessed by the NYHA functional classification are similar in ATTR-CM and non-ATTR-CM patients, and the clinical overlap between ATTR-CM and non-ATTR-CM is high. en-copyright= kn-copyright= en-aut-name=NaitoTakanori en-aut-sei=Naito en-aut-mei=Takanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakamuraKazufumi en-aut-sei=Nakamura en-aut-mei=Kazufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AbeYukio en-aut-sei=Abe en-aut-mei=Yukio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=WatanabeHiroyuki en-aut-sei=Watanabe en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SakuragiSatoru en-aut-sei=Sakuragi en-aut-mei=Satoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KatayamaYusuke en-aut-sei=Katayama en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KiharaHajime en-aut-sei=Kihara en-aut-mei=Hajime kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OkizakiAtsutaka en-aut-sei=Okizaki en-aut-mei=Atsutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KawaiYusuke en-aut-sei=Kawai en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=YoshikawaMasaki en-aut-sei=Yoshikawa en-aut-mei=Masaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=TakaishiAtsushi en-aut-sei=Takaishi en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=FujioHideki en-aut-sei=Fujio en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=OtsukaHiroaki en-aut-sei=Otsuka en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=OguraSoichiro en-aut-sei=Ogura en-aut-mei=Soichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=ATTR HFpEF Registry Investigators en-aut-sei=ATTR HFpEF Registry Investigators en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Cardiology, Osaka City General Hospital kn-affil= affil-num=4 en-affil=Department of Cardiovascular Medicine, Tokyo Bay Urayasu Ichikawa Medical Center kn-affil= affil-num=5 en-affil=Department of Cardiovascular Medicine, National Hospital Organization Iwakuni Clinical Center kn-affil= affil-num=6 en-affil=Department of Cardiovascular Medicine, National Hospital Organization Iwakuni Clinical Center kn-affil= affil-num=7 en-affil=Department of Internal Medicine, Kihara Cardiovascular Clinic kn-affil= affil-num=8 en-affil=Department of Radiology, Asahikawa Medical University kn-affil= affil-num=9 en-affil=Department of Cardiovascular Medicine, Okayama City Hospital kn-affil= affil-num=10 en-affil=Department of Cardiovascular Medicine, Fukuyama City Hospital kn-affil= affil-num=11 en-affil=Department of Cardiology, Mitoyo General Hospital kn-affil= affil-num=12 en-affil=Department of Cardiovascular Medicine, Japanese Red Cross Society Himeji Hospital kn-affil= affil-num=13 en-affil=Department of Cardiovascular Medicine, National Hospital Organization Iwakuni Clinical Center kn-affil= affil-num=14 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=15 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=16 en-affil= kn-affil= en-keyword=Transthyretin amyloidosis kn-keyword=Transthyretin amyloidosis en-keyword=Heart failure kn-keyword=Heart failure en-keyword=Scintigraphy kn-keyword=Scintigraphy en-keyword=Left ventricular hypertrophy kn-keyword=Left ventricular hypertrophy END start-ver=1.4 cd-journal=joma no-vol=134 cd-vols= no-issue=2 article-no= start-page=79 end-page=85 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220801 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Multicenter clinical trials that take cardiovascular care one step further kn-title=循環器診療を一歩進める多施設共同臨床試験 en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name=伊藤浩 kn-aut-sei=伊藤 kn-aut-mei=浩 aut-affil-num=1 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Science, Okayama University kn-affil=岡山大学学術研究院医歯薬学域 循環器内科学 en-keyword=多施設共同臨床試験(multicentertrial) kn-keyword=多施設共同臨床試験(multicentertrial) en-keyword=遠隔診療(remote medicalcare) kn-keyword=遠隔診療(remote medicalcare) en-keyword=動脈硬化性心血管疾患(atherosclerotic cardiovascular disease) kn-keyword=動脈硬化性心血管疾患(atherosclerotic cardiovascular disease) en-keyword=心不全(heart failure) kn-keyword=心不全(heart failure) en-keyword=糖尿病(diabetes mellitus) kn-keyword=糖尿病(diabetes mellitus) END start-ver=1.4 cd-journal=joma no-vol=30 cd-vols= no-issue=4 article-no= start-page=364 end-page=376 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230401 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Association between High Pericoronary Adipose Tissue Computed Tomography Attenuation and Impaired Flow-Mediated Dilation of the Brachial Artery en-subtitle= kn-subtitle= en-abstract= kn-abstract=Aims: Pericoronary adipose tissue (PCAT) attenuation on coronary computed tomography angiography (CTA) is a noninvasive biomarker for pericoronary inflammation and is associated with cardiac mortality. We aimed to investigate the association between PCAT attenuation and endothelial dysfunction assessed using flow-mediated dilation (FMD).
Methods: A total of 119 outpatients who underwent both coronary CTA and FMD measurements were examined. PCAT attenuation values were assessed at the proximal 40-mm segments of all three major coronary arteries on coronary CTA. Endothelial function was assessed using FMD. Patients were then classified into two groups: those with endothelial dysfunction (FMD <4%, n=44) and those without endothelial dysfunction (FMD ≥ 4%, n=75).
Results: In all three coronary arteries, PCAT attenuation was significantly higher in patients with endothelial dysfunction than in those without endothelial dysfunction. Multivariate logistic regression analysis revealed that PCAT attenuation in the right coronary artery (odds ratio [OR]=1.543; 95% confidence interval [CI]=1.004–2.369, p=0.048) and left anterior descending artery (OR=1.525, 95% CI=1.004–2.369, p=0.049) was an independent predictor of endothelial dysfunction. Subgroup analysis of patients with adverse CTA findings (significant stenosis and/or high-risk plaque) and those with coronary artery calcium score >100 showed that high PCAT attenuation in all three coronary arteries was a significant predictor of endothelial dysfunction.
Conclusion: High PCAT attenuation was significantly associated with FMD-assessed endothelial dysfunction in patients with suspected coronary artery disease. Our results suggest that endothelial dysfunction is one of the pathophysiological mechanisms linking pericoronary inflammation to cardiac mortality. en-copyright= kn-copyright= en-aut-name=IchikawaKeishi en-aut-sei=Ichikawa en-aut-mei=Keishi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MiyoshiToru en-aut-sei=Miyoshi en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OhnoYuko en-aut-sei=Ohno en-aut-mei=Yuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OsawaKazuhiro en-aut-sei=Osawa en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NakashimaMitsutaka en-aut-sei=Nakashima en-aut-mei=Mitsutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NishiharaTakahiro en-aut-sei=Nishihara en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MikiTakashi en-aut-sei=Miki en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TodaHironobu en-aut-sei=Toda en-aut-mei=Hironobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=YoshidaMasatoki en-aut-sei=Yoshida en-aut-mei=Masatoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Medical technology, Kawasaki University of Medical Welfare kn-affil= affil-num=4 en-affil=Department of General Internal Medicine 3, Kawasaki Medical School General Medicine Center kn-affil= affil-num=5 en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Coronary computed tomography angiography kn-keyword=Coronary computed tomography angiography en-keyword=Perivascular coronary inflammation kn-keyword=Perivascular coronary inflammation en-keyword=Endothelial dysfunction kn-keyword=Endothelial dysfunction en-keyword=Flow-mediated dilation kn-keyword=Flow-mediated dilation END start-ver=1.4 cd-journal=joma no-vol=62 cd-vols= no-issue=9 article-no= start-page=1319 end-page=1322 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230501 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Fulminant Myocarditis for Non-small-cell Carcinoma of the Lung with Nivolumab and Ipilimumab Plus Chemotherapy en-subtitle= kn-subtitle= en-abstract= kn-abstract=A 59-year-old man with a high level of antinuclear antibody received nivolumab and ipilimumab plus che-motherapy for lung cancer. Two weeks after the second course, he was admitted with a fever and severe fa-tigue. Laboratory studies showed elevated markers of myocardial damage, and a myocardial biopsy showed inflammatory cell infiltration, damaged myocardial fibers. Myocarditis was diagnosed as an immune-related adverse event (irAE), and high-dose corticosteroids were initiated. However, his cardiac function rapidly worsened, and he died on the fifth day after admission. There is no established treatment strategy for fulmi-nant myocarditis as an irAE, and the further exploration of viable treatment strategies is required. en-copyright= kn-copyright= en-aut-name=NishimuraTomoka en-aut-sei=Nishimura en-aut-mei=Tomoka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NinomiyaKiichiro en-aut-sei=Ninomiya en-aut-mei=Kiichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakashimaMitsutaka en-aut-sei=Nakashima en-aut-mei=Mitsutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AkagiSatoshi en-aut-sei=Akagi en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KuribayashiTadahiro en-aut-sei=Kuribayashi en-aut-mei=Tadahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HigoHisao en-aut-sei=Higo en-aut-mei=Hisao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HottaKatsuyuki en-aut-sei=Hotta en-aut-mei=Katsuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MaedaYoshinobu en-aut-sei=Maeda en-aut-mei=Yoshinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KiuraKatsuyuki en-aut-sei=Kiura en-aut-mei=Katsuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=6 en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=7 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=8 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital kn-affil= en-keyword=myocarditis kn-keyword=myocarditis en-keyword=nivolumab plus ipilimumab kn-keyword=nivolumab plus ipilimumab en-keyword=irAE kn-keyword=irAE en-keyword=case report kn-keyword=case report END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue=10 article-no= start-page=e028706 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230516 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Significant Delayed Activation on the Right Ventricular Outflow Tract Represents Complete Right Bundle-Branch Block Pattern in Brugada Syndrome en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: The appearance of complete right bundle-branch block (CRBBB) in Brugada syndrome (BrS) is associated with an increased risk of ventricular fibrillation. The pathophysiological mechanism of CRBBB in patients with BrS has not been well established. We aimed to clarify the significance of a conduction delay zone associated with arrhythmias on CRBBB using body surface mapping in patients with BrS.
Methods and Results: Body surface mapping was recorded in 11 patients with BrS and 8 control patients both with CRBBB. CRBBB in control patients was transiently exhibited by unintentional catheter manipulation (proximal RBBB). Ventricular activation time maps were constructed for both of the groups. We divided the anterior chest into 4 areas (inferolateral right ventricle [RV], RV outflow tract [RVOT], intraventricular septum, and left ventricle) and compared activation patterns between the 2 groups. Excitation propagated to the RV from the left ventricle through the intraventricular septum with activation delay in the entire RV in the control group (proximal RBBB pattern). In 7 patients with BrS, excitation propagated from the inferolateral RV to the RVOT with significant regional activation delay. The remaining 4 patients with BrS showed a proximal RBBB pattern with the RVOT activation delay. The ventricular activation time in the inferolateral RV was significantly shorter in patients with BrS without a proximal RBBB pattern than in control patients.
Conclusions: The CRBBB morphology in patients with BrS consisted of 2 mechanisms: (1) significantly delayed conduction in the RVOT and (2) proximal RBBB with RVOT conduction delay. Significant RVOT conduction delay without proximal RBBB resulted in CRBBB morphology in patients with BrS. en-copyright= kn-copyright= en-aut-name=MorimotoYoshimasa en-aut-sei=Morimoto en-aut-mei=Yoshimasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MoritaHiroshi en-aut-sei=Morita en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=EjiriKentaro en-aut-sei=Ejiri en-aut-mei=Kentaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MizunoTomofumi en-aut-sei=Mizuno en-aut-mei=Tomofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MasudaTakuro en-aut-sei=Masuda en-aut-mei=Takuro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=UeokaAkira en-aut-sei=Ueoka en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=AsadaSaori en-aut-sei=Asada en-aut-mei=Saori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MiyamotoMasakazu en-aut-sei=Miyamoto en-aut-mei=Masakazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KawadaSatoshi en-aut-sei=Kawada en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=NakagawaKoji en-aut-sei=Nakagawa en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=NishiiNobuhiro en-aut-sei=Nishii en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=NakamuraKazufumi en-aut-sei=Nakamura en-aut-mei=Kazufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine ,Okayama University Graduate School of Medicine, Dentistry, Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Cardiovascular Therapeutics , Okayama University Graduate School of Medicine, Dentistry, Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Cardiovascular Medicine ,Okayama University Graduate School of Medicine, Dentistry, Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Cardiovascular Medicine ,Okayama University Graduate School of Medicine, Dentistry, Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Cardiovascular Medicine ,Okayama University Graduate School of Medicine, Dentistry, Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Cardiovascular Medicine ,Okayama University Graduate School of Medicine, Dentistry, Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Cardiovascular Medicine ,Okayama University Graduate School of Medicine, Dentistry, Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Cardiovascular Medicine ,Okayama University Graduate School of Medicine, Dentistry, Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Cardiovascular Medicine ,Okayama University Graduate School of Medicine, Dentistry, Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Cardiovascular Medicine ,Okayama University Graduate School of Medicine, Dentistry, Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Cardiovascular Therapeutics , Okayama University Graduate School of Medicine, Dentistry, Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Department of Cardiovascular Medicine ,Okayama University Graduate School of Medicine, Dentistry, Pharmaceutical Sciences kn-affil= affil-num=13 en-affil=Department of Cardiovascular Medicine ,Okayama University Graduate School of Medicine, Dentistry, Pharmaceutical Sciences kn-affil= en-keyword=activation pattern kn-keyword=activation pattern en-keyword=body surface map kn-keyword=body surface map en-keyword=Brugada syndrome kn-keyword=Brugada syndrome en-keyword=complete right bundle-branch block kn-keyword=complete right bundle-branch block END start-ver=1.4 cd-journal=joma no-vol=76 cd-vols= no-issue=9 article-no= start-page=2266 end-page=2272 dt-received= dt-revised= dt-accepted= dt-pub-year=2012 dt-pub=201209 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Impact of Chronic Kidney Disease on Left Main Coronary Artery Disease and Prognosis in Japanese Patients en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Renal insufficiency plays a critical role in the pathogenesis of ischemic heart disease. The aim of the present study was to investigate the prevalence of renal dysfunction and its impact on prognosis in patients with left main coronary artery disease (LMCAD) and stable angina pectoris. Methods and Results: A total of 626 consecutive patients with significant coronary artery stenosis were enrolled. Renal insufficiency was graded using estimated glomerular filtration rate (eGFR) before coronary angiography. Chronic kidney disease (CKD) was defined as eGFR <60 ml.min(-1) 1.73 m(-2) and/or proteinuria. Patients with LMCAD (n=95) had a significantly higher prevalence of CKD than those without LMCAD (P=0.02). Multiple logistic regression analysis showed that CKD was independently associated with LMCAD (adjusted odds ratio, 1.74; 95% confidence interval [CI]: 1.09-2.76, P=0.01). A 1-year follow-up of patients with LMCAD showed that the cumulative incidence of major adverse cardiovascular events among patients with eGFR <30 ml.min(-1).1.73 m(-2) was higher than that among patients with eGFR >= 60 ml.min(-1).1.73 m(-2) (P=0.03). The hazard ratio for a cardiovascular event was 9.54 (95% CI: 3.15-28.89, P<0.01) when comparing patients with LMCAD and eGFR <30 ml.min(-1).1.73 m(-2) vs. patients without LMCAD and eGFR >= 60 ml.min(-1).1.73 m(-2). Conclusions: Renal insufficiency is a risk factor for LMCAD and predicts poor prognosis in Japanese patients. en-copyright= kn-copyright= en-aut-name=DanKazuhiro en-aut-sei=Dan en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MiyoshiToru en-aut-sei=Miyoshi en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=UeedaMasayuki en-aut-sei=Ueeda en-aut-mei=Masayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OhtsukaHiroaki en-aut-sei=Ohtsuka en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=UgawaSatoko en-aut-sei=Ugawa en-aut-mei=Satoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OhnishiNobuhiko en-aut-sei=Ohnishi en-aut-mei=Nobuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TakaishiAtsushi en-aut-sei=Takaishi en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NakamuraKazufumi en-aut-sei=Nakamura en-aut-mei=Kazufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KusanoKengo en-aut-sei=Kusano en-aut-mei=Kengo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil= kn-affil=Okayama Univ, Dept Cardiovasc Med, Grad Sch Med Dent & Pharmaceut Sci affil-num=2 en-affil= kn-affil=Okayama Univ, Dept Cardiovasc Med, Grad Sch Med Dent & Pharmaceut Sci affil-num=3 en-affil= kn-affil=Mitoyo Gen Hosp, Dept Cardiovasc Med affil-num=4 en-affil= kn-affil=Mitoyo Gen Hosp, Dept Cardiovasc Med affil-num=5 en-affil= kn-affil=Mitoyo Gen Hosp, Dept Cardiovasc Med affil-num=6 en-affil= kn-affil=Mitoyo Gen Hosp, Dept Cardiovasc Med affil-num=7 en-affil= kn-affil=Mitoyo Gen Hosp, Dept Cardiovasc Med affil-num=8 en-affil= kn-affil=Okayama Univ, Dept Cardiovasc Med, Grad Sch Med Dent & Pharmaceut Sci affil-num=9 en-affil= kn-affil=Okayama Univ, Dept Cardiovasc Med, Grad Sch Med Dent & Pharmaceut Sci affil-num=10 en-affil= kn-affil=Okayama Univ, Dept Cardiovasc Med, Grad Sch Med Dent & Pharmaceut Sci en-keyword=Chronic kidney disease kn-keyword=Chronic kidney disease en-keyword=Coronary artery disease kn-keyword=Coronary artery disease en-keyword=Left main coronary artery kn-keyword=Left main coronary artery en-keyword=Risk factor kn-keyword=Risk factor END start-ver=1.4 cd-journal=joma no-vol=63 cd-vols= no-issue=20 article-no= start-page=2131 end-page=2138 dt-received= dt-revised= dt-accepted= dt-pub-year=2014 dt-pub=20140527 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Electrocardiographic Parameters and Fatal Arrhythmic Events in Patients With Brugada Syndrome en-subtitle= kn-subtitle= en-abstract= kn-abstract=Objectives This study aimed to determine the usefulness of the combination of several electrocardiographic markers on risk assessment of ventricular fibrillation (VF) in patients with Brugada syndrome (BrS). Background Detection of high-/low-risk BrS patients using a noninvasive method is an important issue in the clinical setting. Several electrocardiographic markers related to depolarization and repolarization abnormalities have been reported, but the relationship and usefulness of these parameters in VF events are unclear. Methods Baseline characteristics of 246 consecutive patients (236 men; mean age, 47.6 +/- 13.6 years) with a Brugada-type electrocardiogram, including 13 patients with a history of VF and 40 patients with a history of syncope episodes, were retrospectively analyzed. During the mean follow-up period of 45.1 months, VF in 23 patients and sudden cardiac death (SCD) in 1 patient were observed. Clinical/ genetic and electrocardiographic parameters were compared with VF/SCD events. Results On univariate analysis, a history of VF and syncope episodes, paroxysmal atrial fibrillation, spontaneous type 1 pattern in the precordial leads, and electrocardiographic markers of depolarization abnormalities (QRS duration >= 120 ms, and fragmented QRS [f-QRS]) and those of repolarization abnormalities (inferolateral early repolarization [ER] pattern and QT prolongation) were associated with later cardiac events. On multivariable analysis, a history of VF and syncope episodes, inferolateral ER pattern, and f-QRS were independent predictors of documented VF and SCD (odds ratios: 19.61, 28.57, 2.87, and 5.21, respectively; p < 0.05). Kaplan-Meier curves showed that the presence/ absence of inferolateral ER and f-QRS predicted a worse/better prognosis (log-rank test, p < 0.01). Conclusions The combination of depolarization and repolarization abnormalities in BrS is associated with later VF events. The combination of these abnormalities is useful for detecting high-and low-risk BrS patients. en-copyright= kn-copyright= en-aut-name=TokiokaKoji en-aut-sei=Tokioka en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KusanoKengo F. en-aut-sei=Kusano en-aut-mei=Kengo F. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MoritaHiroshi en-aut-sei=Morita en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MiuraDaiji en-aut-sei=Miura en-aut-mei=Daiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NishiiNobuhiro en-aut-sei=Nishii en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NagaseSatoshi en-aut-sei=Nagase en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NakamuraKazufumi en-aut-sei=Nakamura en-aut-mei=Kazufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KohnoKunihisa en-aut-sei=Kohno en-aut-mei=Kunihisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=OheTohru en-aut-sei=Ohe en-aut-mei=Tohru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Cardiovasc Med affil-num=2 en-affil= kn-affil=Natl Cerebral & Cardiovasc Ctr, Dept Cardiovasc Med affil-num=3 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Cardiovasc Med affil-num=4 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Cardiovasc Med affil-num=5 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Cardiovasc Med affil-num=6 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Cardiovasc Med affil-num=7 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Cardiovasc Med affil-num=8 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Cardiovasc Med affil-num=9 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Cardiovasc Med affil-num=10 en-affil= kn-affil=Sakakibara Heart Inst Okayama en-keyword=Brugada syndrome kn-keyword=Brugada syndrome en-keyword=early repolarization kn-keyword=early repolarization en-keyword=fragmented QRS kn-keyword=fragmented QRS en-keyword=noninvasive risk assessment kn-keyword=noninvasive risk assessment en-keyword=ventricular fibrillation kn-keyword=ventricular fibrillation END start-ver=1.4 cd-journal=joma no-vol=9 cd-vols= no-issue=7 article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2014 dt-pub=20140722 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Directed Differentiation of Patient-Specific Induced Pluripotent Stem Cells Identifies the Transcriptional Repression and Epigenetic Modification of NKX2-5, HAND1, and NOTCH1 in Hypoplastic Left Heart Syndrome en-subtitle= kn-subtitle= en-abstract= kn-abstract=The genetic basis of hypoplastic left heart syndrome (HLHS) remains unknown, and the lack of animal models to reconstitute the cardiac maldevelopment has hampered the study of this disease. This study investigated the altered control of transcriptional and epigenetic programs that may affect the development of HLHS by using disease-specific induced pluripotent stem (iPS) cells. Cardiac progenitor cells (CPCs) were isolated from patients with congenital heart diseases to generate patient-specific iPS cells. Comparative gene expression analysis of HLHS- and biventricle (BV) heart-derived iPS cells was performed to dissect the complex genetic circuits that may promote the disease phenotype. Both HLHS- and BV heart-derived CPCs were reprogrammed to generate disease-specific iPS cells, which showed characteristic human embryonic stem cell signatures, expressed pluripotency markers, and could give rise to cardiomyocytes. However, HLHS-iPS cells exhibited lower cardiomyogenic differentiation potential than BV-iPS cells. Quantitative gene expression analysis demonstrated that HLHS-derived iPS cells showed transcriptional repression of NKX2-5, reduced levels of TBX2 and NOTCH/HEY signaling, and inhibited HAND1/2 transcripts compared with control cells. Although both HLHS-derived CPCs and iPS cells showed reduced SRE and TNNT2 transcriptional activation compared with BV-derived cells, co-transfection of NKX2-5, HAND1, and NOTCH1 into HLHS-derived cells resulted in synergistic restoration of these promoters activation. Notably, gain- and loss-of-function studies revealed that NKX2-5 had a predominant impact on NPPA transcriptional activation. Moreover, differentiated HLHS-derived iPS cells showed reduced H3K4 dimethylation as well as histone H3 acetylation but increased H3K27 trimethylation to inhibit transcriptional activation on the NKX2-5 promoter. These findings suggest that patient-specific iPS cells may provide molecular insights into complex transcriptional and epigenetic mechanisms, at least in part, through combinatorial expression of NKX2-5, HAND1, and NOTCH1 that coordinately contribute to cardiac malformations in HLHS. en-copyright= kn-copyright= en-aut-name=KobayashiJunko en-aut-sei=Kobayashi en-aut-mei=Junko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YoshidaMasashi en-aut-sei=Yoshida en-aut-mei=Masashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TaruiSuguru en-aut-sei=Tarui en-aut-mei=Suguru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HirataMasataka en-aut-sei=Hirata en-aut-mei=Masataka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NagaiYusuke en-aut-sei=Nagai en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KasaharaShingo en-aut-sei=Kasahara en-aut-mei=Shingo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NaruseKeiji en-aut-sei=Naruse en-aut-mei=Keiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SanoShunji en-aut-sei=Sano en-aut-mei=Shunji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=OhHidemasa en-aut-sei=Oh en-aut-mei=Hidemasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Cardiovasc Surg affil-num=2 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Cardiovasc Med affil-num=3 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Cardiovasc Surg affil-num=4 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Cardiovasc Surg affil-num=5 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Cardiovasc Physiol affil-num=6 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Cardiovasc Surg affil-num=7 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Cardiovasc Physiol affil-num=8 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Cardiovasc Med affil-num=9 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Cardiovasc Surg affil-num=10 en-affil= kn-affil=Okayama Univ Hosp, Dept Regenerat Med, Ctr Innovat Clin Med END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue=15 article-no= start-page=5028 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230731 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Evidence for Hypoxia-Induced Shift in ATP Production from Glycolysis to Mitochondrial Respiration in Pulmonary Artery Smooth Muscle Cells in Pulmonary Arterial Hypertension en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: The metabolic state of pulmonary artery smooth muscle cells (PASMCs) from patients with pulmonary arterial hypertension (PAH) is not well understood. In this study, we examined the balance between glycolysis and mitochondrial respiration in non-PAH-PASMCs and PAH-PASMCs under normoxia and hypoxia. Methods: We investigated the enzymes involved in glycolysis and mitochondrial respiration, and studied the two major energy-yielding pathways (glycolysis and mitochondrial respiration) by measuring extracellular acidification rate (ECAR) and cellular oxygen consumption rate (OCR) using the Seahorse extracellular flux technology. Results: Under both normoxia and hypoxia, the mRNA and protein levels of pyruvate dehydrogenase kinase 1 and pyruvate dehydrogenase were increased in PAH-PASMCs compared with non-PAH-PASMCs. The mRNA and protein levels of lactate dehydrogenase, as well as the intracellular lactate concentration, were also increased in PAH-PASMCs compared with non-PAH-PASMCs under normoxia. However, these were not significantly increased in PAH-PASMCs compared with non-PAH-PASMCs under hypoxia. Under normoxia, ATP production was significantly lower in PAH-PASMCs (59 ± 5 pmol/min) than in non-PAH-PASMCs (70 ± 10 pmol/min). On the other hand, ATP production was significantly higher in PAH-PASMCs (31 ± 5 pmol/min) than in non-PAH-PASMCs (14 ± 3 pmol/min) under hypoxia. Conclusions: There is an underlying change in the metabolic strategy to generate ATP production under the challenge of hypoxia. en-copyright= kn-copyright= en-aut-name=AkagiSatoshi en-aut-sei=Akagi en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakamuraKazufumi en-aut-sei=Nakamura en-aut-mei=Kazufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KondoMegumi en-aut-sei=Kondo en-aut-mei=Megumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HirohataSatoshi en-aut-sei=Hirohata en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=UdonoHeiichiro en-aut-sei=Udono en-aut-mei=Heiichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NishidaMikako en-aut-sei=Nishida en-aut-mei=Mikako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SaitoYukihiro en-aut-sei=Saito en-aut-mei=Yukihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YoshidaMasashi en-aut-sei=Yoshida en-aut-mei=Masashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MiyoshiToru en-aut-sei=Miyoshi en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Medical Technology, Graduate School of Health Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Immunology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Immunology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=glycolysis kn-keyword=glycolysis en-keyword=mitochondrial respiration kn-keyword=mitochondrial respiration en-keyword=pulmonary arterial hypertension kn-keyword=pulmonary arterial hypertension en-keyword=pulmonary artery smooth muscle cells kn-keyword=pulmonary artery smooth muscle cells en-keyword=Seahorse technology kn-keyword=Seahorse technology en-keyword=hypoxia kn-keyword=hypoxia en-keyword=ATP production kn-keyword=ATP production END start-ver=1.4 cd-journal=joma no-vol=121 cd-vols= no-issue=2 article-no= start-page=91 end-page=98 dt-received= dt-revised= dt-accepted= dt-pub-year=2009 dt-pub=20090803 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Pathology of and therapeutic strategy for microvascular dysfunction in patients with acute myocardial infarction kn-title=急性心筋梗塞における冠微小循環障害の病態と治療戦略 en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name=伊藤浩 kn-aut-sei=伊藤 kn-aut-mei=浩 aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=岡山大学大学院医歯薬学総合研究科 循環器内科学 en-keyword=microcirculation kn-keyword=microcirculation en-keyword=no reflow phenomenon kn-keyword=no reflow phenomenon en-keyword=reperfusion kn-keyword=reperfusion en-keyword=myocardial infarction kn-keyword=myocardial infarction en-keyword=coronary flow kn-keyword=coronary flow END start-ver=1.4 cd-journal=joma no-vol=29 cd-vols= no-issue=3 article-no= start-page=423 end-page=431 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20211115 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The number of circulating CD34-positive cells is an independent predictor of coronary artery calcification progression: Sub-analysis of a prospective multicenter study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Decreases in circulating CD34-positive cells are associated with increases in cardiovascular events. We investigated the association between the number of CD34-positive cells and the progression of coronary artery calcification (CAC), a marker of atherosclerosis, in patients with hypercholesteremia under statin therapy in a sub-analysis of a multicenter study.
Methods: In the principal study, patients with CAC scores of 1–999 were treated with pitavastatin. Measurement of CAC by non-enhanced computed tomography and a blood test were performed at baseline and at 1-year follow-up. Patients were divided into two groups: CAC progression (change in CAC score > 0) and non-progression. The number of circulating CD34-positive cells was counted using flow cytometry.
Results: A total of 156 patients (mean age 67 years, 55% men) were included in this sub-analysis. CD34 positive cell numbers at baseline as a continuous variable was inversely correlated with annual change in the log-transformed CAC score (r = –0.19, p = 0.02). When patients were divided into high and low CD34 groups based on the median value of 0.8 cells/μL, the adjusted change in CAC score in the low-CD34 group was significantly greater than that in the high-CD34 group (54.2% vs. 20.8%, respectively, p = 0.04). In multiple logistic analysis, a low CD34-positive cell number was an independent predictor of CAC progression, with an odds ratio of 2.88 (95% confidence interval 1.28–6.49, p = 0.01).
Conclusions: Low numbers of CD34-positive cells are associated with CAC progression in patients with hypercholesterolemia under statin therapy. The number of CD34-positive cells may help to identify patients at increased cardiovascular risk. en-copyright= kn-copyright= en-aut-name=IchikawaKeishi en-aut-sei=Ichikawa en-aut-mei=Keishi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MiyoshiToru en-aut-sei=Miyoshi en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OsawaKazuhiro en-aut-sei=Osawa en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MikiTakashi en-aut-sei=Miki en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KohnoKunihisa en-aut-sei=Kohno en-aut-mei=Kunihisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NakamuraKazufumi en-aut-sei=Nakamura en-aut-mei=Kazufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KoyamaYasushi en-aut-sei=Koyama en-aut-mei=Yasushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Density and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Density and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Cardiovascular Medicine, Japanese Red Cross Okayama Hospital kn-affil= affil-num=4 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Density and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Density and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Density and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Cardiology, Sakurabashi Watanabe Hospital kn-affil= affil-num=8 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Density and Pharmaceutical Sciences kn-affil= en-keyword=coronary artery calcification kn-keyword=coronary artery calcification en-keyword=computed tomography kn-keyword=computed tomography en-keyword=endothelial progenitor cells kn-keyword=endothelial progenitor cells en-keyword=hypercholesterolemia kn-keyword=hypercholesterolemia END start-ver=1.4 cd-journal=joma no-vol=28 cd-vols= no-issue=18 article-no= start-page=2059 end-page=2066 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210719 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Incremental prognostic value of non-alcoholic fatty liver disease over coronary computed tomography angiography findings in patients with suspected coronary artery disease en-subtitle= kn-subtitle= en-abstract= kn-abstract=Aims This study aimed to investigate additional risk stratification benefits of hepatic steatosis (HS) concurrently assessed during coronary computed tomography angiography (CTA) in a large patient cohort with suspected stable coronary artery disease (CAD).
Methods and results In this prospective study, 1148 Japanese outpatients without a history of CAD who underwent coronary CTA for suspected stable CAD (mean age 64 ± 14 years) were included. HS, defined on CT as a hepatic-to-spleen attenuation ratio of <1.0, was examined just before the evaluation of adverse CTA findings, defined as obstructive and/or high-risk plaque. The major adverse cardiac events (MACE) were the composite of cardiac death, acute coronary syndrome, and late revascularization. The incremental predictive value of HS was evaluated using the global χ2 test and C-statistic. HS was identified in 247 (22%) patients. During a median follow-up of 3.9 years, MACE was observed in 40 (3.5%) patients. HS was significantly associated with MACE in a model that included adverse CTA findings (hazard ratio 4.01, 95% confidence interval 2.12–7.59, P < 0.001). By adding HS to the Framingham risk score and adverse CTA findings, the global χ2 score and C-statistic significantly increased from 29.0 to 49.5 (P < 0.001) and 0.74 to 0.81 (P = 0.026), respectively. In subgroup analyses in patients with diabetes mellitus and metabolic syndrome, HS had significant additive predictive value for MACE over the Framingham risk score and adverse CTA findings.
Conclusion In patients with suspected stable CAD, concurrent evaluation of HS during coronary CTA enables more accurate detection of patients at higher risk of MACE. en-copyright= kn-copyright= en-aut-name=IchikawaKeishi en-aut-sei=Ichikawa en-aut-mei=Keishi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MiyoshiToru en-aut-sei=Miyoshi en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OsawaKazuhiro en-aut-sei=Osawa en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MikiTakashi en-aut-sei=Miki en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TodaHironobu en-aut-sei=Toda en-aut-mei=Hironobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=EjiriKentaro en-aut-sei=Ejiri en-aut-mei=Kentaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YoshidaMasashi en-aut-sei=Yoshida en-aut-mei=Masashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NakamuraKazufumi en-aut-sei=Nakamura en-aut-mei=Kazufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MoritaHiroshi en-aut-sei=Morita en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of General Internal Medicine 3, Kawasaki Medical School General Medical Center kn-affil= affil-num=4 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Cardiovascular Therapeutics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science kn-affil= affil-num=10 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Coronary artery disease kn-keyword=Coronary artery disease en-keyword=Computed tomography angiography kn-keyword=Computed tomography angiography en-keyword=Atherosclerotic plaque kn-keyword=Atherosclerotic plaque en-keyword=Risk assessment kn-keyword=Risk assessment en-keyword=Hepatic steatosis kn-keyword=Hepatic steatosis END start-ver=1.4 cd-journal=joma no-vol=10 cd-vols= no-issue= article-no= start-page=1261330 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230907 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=In vivo tracking transplanted cardiomyocytes derived from human induced pluripotent stem cells using nuclear medicine imaging en-subtitle= kn-subtitle= en-abstract= kn-abstract=Introduction: Transplantation of human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) is a promising treatment for heart failure. Information on long-term cell engraftment after transplantation is clinically important. However, clinically applicable evaluation methods have not yet been established.
Methods: In this study, to noninvasively assess transplanted cell engraftment, human SLC5A5, which encodes a sodium/iodide symporter (NIS) that transports radioactive tracers such as 125I, 18F-tetrafluoroborate (TFB), and 99mTc-pertechnetate (99mTcO4−), was transduced into human induced pluripotent stem cells (iPSCs), and nuclear medicine imaging was used to track engrafted human iPSC-CMs.
Results: To evaluate the pluripotency of NIS-expressing human iPSCs, they were subcutaneously transplanted into immunodeficient rats. Teratomas were detected by 99mTcO4− single photon emission computed tomography (SPECT/CT) imaging. NIS expression and the uptake ability of 125I were maintained in purified human iPSC-CMs. NIS-expressing human iPSC-CMs transplanted into immunodeficient rats could be detected over time using 99mTcO4− SPECT/CT imaging. Unexpectedly, NIS expression affected cell proliferation of human iPSCs and iPSC-derived cells.
Discussion: Such functionally designed iPSC-CMs have potential clinical applications as a noninvasive method of grafted cell evaluation, but further studies are needed to determine the effects of NIS transduction on cellular characteristics and functions. en-copyright= kn-copyright= en-aut-name=SaitoYukihiro en-aut-sei=Saito en-aut-mei=Yukihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NoseNaoko en-aut-sei=Nose en-aut-mei=Naoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IidaToshihiro en-aut-sei=Iida en-aut-mei=Toshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AkazawaKaoru en-aut-sei=Akazawa en-aut-mei=Kaoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KannoTakayuki en-aut-sei=Kanno en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=FujimotoYuki en-aut-sei=Fujimoto en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SasakiTakanori en-aut-sei=Sasaki en-aut-mei=Takanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=AkehiMasaru en-aut-sei=Akehi en-aut-mei=Masaru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HiguchiTakahiro en-aut-sei=Higuchi en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=AkagiSatoshi en-aut-sei=Akagi en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=YoshidaMasashi en-aut-sei=Yoshida en-aut-mei=Masashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=MiyoshiToru en-aut-sei=Miyoshi en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=NakamuraKazufumi en-aut-sei=Nakamura en-aut-mei=Kazufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Okayama University Hospital kn-affil= affil-num=2 en-affil=Molecular Imaging Project of RECTOR Program, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Molecular Imaging Project of RECTOR Program, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Molecular Imaging Project of RECTOR Program, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Okayama Medical Innovation Center, Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Okayama Medical Innovation Center, Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Molecular Imaging Project of RECTOR Program, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=11 en-affil=Department of Chronic Kidney Disease and Cardiovascular Disease, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=12 en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=13 en-affil=Department of General Internal Medicine 3, Kawasaki Medical School kn-affil= affil-num=14 en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=sodium/iodide symporter kn-keyword=sodium/iodide symporter en-keyword=human induced pluripotent stem cell-derived cardiomyocytes kn-keyword=human induced pluripotent stem cell-derived cardiomyocytes en-keyword=single photon emission computed tomography kn-keyword=single photon emission computed tomography en-keyword=cell-based therapy kn-keyword=cell-based therapy en-keyword=in vivo imaging kn-keyword=in vivo imaging END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue=3 article-no= start-page=e12286 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230912 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Impact of malnutrition on prognosis in patients with pulmonary arterial hypertension en-subtitle= kn-subtitle= en-abstract= kn-abstract=Pulmonary arterial hypertension is a life-threatening disease that coexists with right heart failure. We evaluated the relationship between malnutrition and prognosis in patients with pulmonary arterial hypertension, as malnutrition is known as a prognosis determinant in chronic heart failure. We retrospectively reviewed data of patients with pulmonary arterial hypertension before treatment. The Geriatric Nutritional Risk Index, Prognostic Nutritional Index, and Controlling Nutritional Status scores on the day of diagnosis were calculated to assess the nutritional status. Clinical endpoints were defined as composite outcomes of all-cause death or lung transplantation. Eighty patients were enrolled (mean age, 50 years; 23 men). The mean pulmonary arterial pressure was 47 ± 19 mmHg, Geriatric Nutritional Risk Index was 99.9 ± 12.0, and Prognostic Nutritional Index was 46.3 ± 10.0. The median Controlling Nutritional Status score was 2 (1–4). During the median 5.5-year follow-up period, 28 composite events occurred. Kaplan-Meier analysis demonstrated significant differences in the incidence of clinical endpoints between groups divided by each median Geriatric Nutritional Risk Index, Prognostic Nutritional Index, and Controlling Nutritional Status score (p = 0.007, 0.039, and 0.010, respectively). In multivariate Cox regression analysis, clinical endpoints were significantly associated with Geriatric Nutritional Risk Index (hazard ratio: 0.953, 95% confidence interval: 0.918–0.990), Prognostic Nutritional Index (hazard ratio: 0.942, 95% confidence interval: 0.892–0.996), and Controlling Nutritional Status score (hazard ratio: 1.230, 95% confidence interval: 1.056–1.433) after adjustment for factors associated in univariate Cox regression analysis. Malnutrition at diagnosis is a useful prognostic predictor for patients with pulmonary arterial hypertension. en-copyright= kn-copyright= en-aut-name=NakashimaMitsutaka en-aut-sei=Nakashima en-aut-mei=Mitsutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AkagiSatoshi en-aut-sei=Akagi en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=EjiriKentaro en-aut-sei=Ejiri en-aut-mei=Kentaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NakamuraKazufumi en-aut-sei=Nakamura en-aut-mei=Kazufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Controlling Nutritional Status score kn-keyword=Controlling Nutritional Status score en-keyword=Geriatric Nutritional Risk Index kn-keyword=Geriatric Nutritional Risk Index en-keyword=nutritional status kn-keyword=nutritional status en-keyword=Prognostic Nutritional Index kn-keyword=Prognostic Nutritional Index END start-ver=1.4 cd-journal=joma no-vol=63 cd-vols= no-issue=4 article-no= start-page=161 end-page=168 dt-received= dt-revised= dt-accepted= dt-pub-year=2009 dt-pub=200908 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=No-reflow Phenomenon in Patients with Acute Myocardial Infarction:Its Pathophysiology and Clinical Implications en-subtitle= kn-subtitle= en-abstract= kn-abstract=

For patients with acute myocardial infarction (MI), the immediate therapeutic goal is to establish the patency of the infarct-related artery. Prolonged myocardial ischemia, however, often breaks down the coronary microvasculature, and the flow to the infarct myocardium may be markedly reduced. This is called the no-reflow phenomenon. This phenomenon is important not solely because it correlates with infarct size but because it provides additional prognostic information. With recent advances in imaging modalities, the no-reflow phenomenon is observed more frequently than when clinical judgment alone is used. Patients with this phenomenon are associated with poor functional and clinical outcomes. Now, the no-reflow phenomenon can be a parameter with which to predict high-risk patients. The focus of reperfusion therapy has shifted toward the improvement of myocardial perfusion. The improvement of myocardial perfusion could promote the functional recovery of viable muscle and reduce infarct expansion, which is associated with favorable clinical outcomes. For this purpose, pharmacological interventions and catheter-based devices to retrieve embolic materials have been proposed. Advances in our understanding of the pathophysiology of microvascular dysfunction would aid the development of therapeutic strategies for its prevention and treatment.

en-copyright= kn-copyright= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences en-keyword=cardiac function kn-keyword=cardiac function en-keyword=coronary intervention kn-keyword=coronary intervention en-keyword=microcirculation kn-keyword=microcirculation en-keyword=myocardial infarction kn-keyword=myocardial infarction en-keyword=reperfusion kn-keyword=reperfusion END start-ver=1.4 cd-journal=joma no-vol=10 cd-vols= no-issue=4 article-no= start-page=2447 end-page=2457 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230531 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Association of perivascular fat attenuation on computed tomography and heart failure with preserved ejection fraction en-subtitle= kn-subtitle= en-abstract= kn-abstract=Aims Heart failure with a preserved ejection fraction (HFpEF) is associated with chronic inflammation. We aimed to investigate the association between pericoronary adipose tissue attenuation (PCATA) on coronary computed tomography angiography as a novel noninvasive marker of pericoronary inflammation and the presence of HFpEF.
Methods and results This retrospective study included 607 outpatients (median age, 65 years; 50% male) who underwent both echocardiography and coronary computed tomography angiography. Patients with obstructive coronary artery disease were excluded from this study. PCATA was compared between patients with and without HFpEF, which was diagnosed according to the Heart Failure Association (HFA)-PEFF score. PCATA was assessed at the proximal 40-mm segments of all three major coronary arteries on coronary computed tomography angiography. Patients with HFpEF had higher PCATA in all coronary arteries compared to the control participants: left anterior descending artery (LAD), -65.2 +/- 6.9 Hounsfield units (HU) vs. -68.1 +/- 6.7 HU; left circumflex artery (LCX), -62.7 +/- 6.8 HU vs. -65.4 +/- 6.6 HU; and right coronary artery (RCA), -63.6 +/- 8.5 HU vs. -65.5 +/- 7.7 HU (P < 0.01). Multivariate logistic regression analysis, including conventional risk factors, revealed that PCATA per standard deviation in the LAD (odds ratio [OR], 1.449; 95% confidence interval [CI], 1.152-1.823), LCX (OR, 1.634; 95% CI, 1.283-2.081), and RCA (OR, 1.388; 95% CI, 1.107-1.740) were independently associated with HFpEF. The association between PCATA and HFpEF was mostly consistent across various patient clinical characteristics. The left ventricular mass and left atrial volume index showed a mild correlation with LAD-PCATA (rho = 0.13 [P rho = 0.24 [P < 0.01]) and LCX-PCATA (rho = 0.16 [P rho = 0.23 [P < 0.01]).
Conclusions High PCATA score was significantly associated with the presence of HFpEF. Our results suggest that inflammation in the pericoronary artery adipose tissue is one of the underlying mechanisms of HFpEF. en-copyright= kn-copyright= en-aut-name=NishiharaTakahiro en-aut-sei=Nishihara en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MiyoshiToru en-aut-sei=Miyoshi en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakashimaMitsutaka en-aut-sei=Nakashima en-aut-mei=Mitsutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IchikawaKeishi en-aut-sei=Ichikawa en-aut-mei=Keishi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakayaYoichi en-aut-sei=Takaya en-aut-mei=Yoichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NakayamaRie en-aut-sei=Nakayama en-aut-mei=Rie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MikiTakashi en-aut-sei=Miki en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Adipose tissue kn-keyword=Adipose tissue en-keyword=Computed tomography kn-keyword=Computed tomography en-keyword=Coronary artery kn-keyword=Coronary artery en-keyword=Heart failure kn-keyword=Heart failure en-keyword=Inflammation kn-keyword=Inflammation END start-ver=1.4 cd-journal=joma no-vol=30 cd-vols= no-issue=12 article-no= start-page=1927 end-page=1949 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20231201 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Enhanced Production of EPA-Derived Anti-Inflammatory Metabolites after Oral Administration of a Novel Self-Emulsifying Highly Purified EPA Ethyl Ester Formulation (MND-2119) en-subtitle= kn-subtitle= en-abstract= kn-abstract=Aims: MND-2119 is a novel once-daily dose self-emulsifying formulation of highly purified eicosapentaenoic acid ethyl ester (EPA-E) and is approved as an antihyperlipidemia agent in Japan. It has improved absorption and achieves higher plasma EPA concentrations at Cmax than conventional EPA-E. In the JELIS trial, concomitant use of EPA-E with statin therapy significantly reduced atherosclerotic cardiovascular disease (ASCVD) risks. As a potential mechanism of action of EPA, endogenous formation of EPA-derived anti-inflammatory metabolites is receiving greater attention. This study aims to investigate the endogenous formation of EPA-derived anti-inflammatory metabolites following single and multiple administrations of MND-2119.
Methods: Healthy adult male subjects were randomly assigned to a nonintervention (control) group, MND-2119 2-g/day group, MND-2119 4-g/day group, or EPA-E 1.8-g/day group for 7 days (N=8 per group). Plasma fatty acids and EPA-derived metabolites were evaluated. Peripheral blood neutrophils were isolated, and the production of EPA-derived metabolites from in vitro stimulated neutrophils was evaluated.
Results: After single and multiple administrations of MND-2119 2 g/day, there were significant increases in plasma EPA concentration, 18-hydroxyeicosapentaenoic acid (18-HEPE), and 17,18-epoxyeicosatetraenoic acid compared with those of EPA-E 1.8 g/day. They were further increased with MND-2119 4 g/day administration. In neutrophils, the EPA concentration in the MND-2119 2-g/day group was significantly higher compared with that in the EPA-E 1.8-g/day group after multiple administration, and 18-HEPE production was positively correlated with EPA concentration. No safety issues were noted.
Conclusions: These results demonstrate that MND-2119 increases the plasma and cellular concentrations of EPA and EPA-derived metabolites to a greater extent than conventional EPA-E formulations. en-copyright= kn-copyright= en-aut-name=MiyoshiToru en-aut-sei=Miyoshi en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NaoeSatoko en-aut-sei=Naoe en-aut-mei=Satoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WakabayashiHiroyuki en-aut-sei=Wakabayashi en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YanoTakashi en-aut-sei=Yano en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MoriTakuya en-aut-sei=Mori en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KandaShingo en-aut-sei=Kanda en-aut-mei=Shingo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=AritaMakoto en-aut-sei=Arita en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Medical Affairs Department, Mochida Pharmaceutical Co., Ltd. kn-affil= affil-num=3 en-affil=Medical Affairs Department, Mochida Pharmaceutical Co., Ltd. kn-affil= affil-num=4 en-affil=Medical Affairs Department, Mochida Pharmaceutical Co., Ltd. kn-affil= affil-num=5 en-affil=Clinical Research Department, Mochida Pharmaceutical Co., Ltd. kn-affil= affil-num=6 en-affil=Clinical Development Planning and Management Department, Mochida Pharmaceutical Co., Ltd. kn-affil= affil-num=7 en-affil=Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences kn-affil= affil-num=8 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Eicosapentaenoic acid kn-keyword=Eicosapentaenoic acid en-keyword=MND-2119 kn-keyword=MND-2119 en-keyword=Metablolite kn-keyword=Metablolite en-keyword=Inflammation kn-keyword=Inflammation END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240319 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Pericardial Effusion in Association With Periodontitis: Case Report and Review of 8 Patients in Literature en-subtitle= kn-subtitle= en-abstract= kn-abstract=Periodontal diseases are well-known background for infective endocarditis. Here, we show that pericardial effusion or pericarditis might have origin also in periodontal diseases. An 86-year-old man with well-controlled hypertension and diabetes mellitus developed asymptomatic increase in pericardial effusion. Two weeks previously, he took oral new quinolone antibiotics for a week because he had painful periodontitis along a dental bridge in the mandibular teeth on the right side and presented cheek swelling. The sputum was positive for Streptococcus species. He was healthy and had a small volume of pericardial effusion for the previous 5 years after drug-eluting coronary stents were inserted at the left anterior descending branch 10 years previously. The differential diagnoses listed for pericardial effusion were infection including tuberculosis, autoimmune diseases, and metastatic malignancy. Thoracic to pelvic computed tomographic scan demonstrated no mass lesions, except for pericardial effusion and a small volume of pleural effusion on the left side. Fluorodeoxyglucose positron emission tomography disclosed many spotty uptakes in the pericardial effusion. The patient denied pericardiocentesis, based on his evaluation of the risk of the procedure. He was thus discharged in several days and followed at outpatient clinic. He underwent dental treatment and pericardial effusion resolved completely in a month. He was healthy in 6 years until the last follow-up at the age of 92 years. We also reviewed 8 patients with pericarditis in association with periodontal diseases in the literature to reveal that periodontal diseases would be the background for developing infective pericarditis and also mediastinitis on some occasions. en-copyright= kn-copyright= en-aut-name=MatsuoToshihiko en-aut-sei=Matsuo en-aut-mei=Toshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatsuoChie Nakago en-aut-sei=Matsuo en-aut-mei=Chie Nakago kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MatsuoNobuhiko en-aut-sei=Matsuo en-aut-mei=Nobuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MoriAyano en-aut-sei=Mori en-aut-mei=Ayano kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MurakamiMasaaki en-aut-sei=Murakami en-aut-mei=Masaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Okayama University kn-affil= affil-num=2 en-affil=Okayama University kn-affil= affil-num=3 en-affil=Okayama University kn-affil= affil-num=4 en-affil=Nagashima Hospital kn-affil= affil-num=5 en-affil=Okayama Heart Clinic kn-affil= affil-num=6 en-affil=Okayama University kn-affil= en-keyword=pericardial effusion kn-keyword=pericardial effusion en-keyword=pericarditis kn-keyword=pericarditis en-keyword=periodontitis (periodontal disease) kn-keyword=periodontitis (periodontal disease) en-keyword=positron emission tomography kn-keyword=positron emission tomography en-keyword=Streptococcus kn-keyword=Streptococcus END