start-ver=1.4 cd-journal=joma no-vol=44 cd-vols= no-issue= article-no= start-page=73 end-page=83 dt-received= dt-revised= dt-accepted= dt-pub-year=2010 dt-pub=201001 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effects of the Cultivation Method on the Characteristics or Gene Expression Profiles of Aspergillus oryzae Using mCD or DPY Media en-subtitle= kn-subtitle= en-abstract= kn-abstract=We used modified Czapek-Dox (mCD) or dextrin-peptone-yeast extract (DPY) media to cultivate a filamentous fungus, Aspergillus oryzae IAM 2706 by three different cultivation methods, i.e., shaking-flask culture (SFC), agar-plate culture (APC), and membrane-surface liquid culture (MSLC), to identify the differences in cultivation behaviors and gene transcriptional profiles. The fungi cultivated by APC or MSLC secreted a greater number of different proteins/enzymes in larger quantities compared with fungi cultivated by SFC, particularly when DPY medium was used. In particular, the amounts of protease secreted by fungi cultivated via MSLC or APC were much greater compared with SFC. When mCD medium was used, -amylase activity was barely detectable in all cultures while the activity was detected in MSLC and APC in a quantity that was several times higher than that in SFC using DPY medium. SDS-PAGE analysis and N-terminal amino acid sequences confirmed 6 proteins in the culture supernatants when DPY medium was used. Among these proteins oryzin (an alkaline protease) and -amylase were detected at much higher levels in APC and MSLC compared with SFC, which was consistent with the measured activity of the secreted enzymes. However, when mCD medium was used, only oryzin was detected in significant amounts in MSLC and APC. Microarray analyses of the fungi cultivated by SFC, APC or MSLC using either mCD or DPY media indicated that the gene transcriptional profile of the MSLC sample was similar to that of the APC sample but different from that of the SFC sample. When mCD medium was used, most of the genes that were up-regulated 10-folds or greater in the MSLC sample relative to the SFC sample were unknown or predicted proteins. Transcription of the oryzin gene was only slightly up-regulated in the MSLC sample while transcription of the -amylase gene was slightly down-regulated. On the other hand, when DPY medium was used, many known genes including the oryzin gene were up-regulated in the MSLC sample versus the SFC sample. en-copyright= kn-copyright= en-aut-name=ImanakaHiroyuki en-aut-sei=Imanaka en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TanakaSoukichi en-aut-sei=Tanaka en-aut-mei=Soukichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FengBin en-aut-sei=Feng en-aut-mei=Bin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ImamuraKoreyoshi en-aut-sei=Imamura en-aut-mei=Koreyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NakanishiKazuhiro en-aut-sei=Nakanishi en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil= kn-affil=Division of Chemistry and Biochemistry, Graduate School of Natural Science and Technology, Okayama University affil-num=2 en-affil= kn-affil=Division of Chemistry and Biochemistry, Graduate School of Natural Science and Technology, Okayama University affil-num=3 en-affil= kn-affil=Division of Chemistry and Biochemistry, Graduate School of Natural Science and Technology, Okayama University affil-num=4 en-affil= kn-affil=Division of Chemistry and Biochemistry, Graduate School of Natural Science and Technology, Okayama University affil-num=5 en-affil= kn-affil=Division of Chemistry and Biochemistry, Graduate School of Natural Science and Technology, Okayama University END start-ver=1.4 cd-journal=joma no-vol=292 cd-vols= no-issue= article-no= start-page=110325 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=202103 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Crystallization characteristics of amorphous trehalose dried from alcohol en-subtitle= kn-subtitle= en-abstract= kn-abstract=Trehalose forms a glass that can be used to preserve labile substances under desiccation. The crystallization characteristics, namely crystallization temperature (Tcry) and isothermal crystallization behavior of amorphous trehalose, dried from alcohol (methanol, ethanol), was analyzed and the results were compared with those for the amorphous trehalose freeze-dried from water. The use of alcohol as a solvent lowered the Tcry from 184 } 6 C for the case of an aqueous solvent to 103 } 5 C/methanol and 120 } 8 C/ethanol. The formation of multiple forms of crystals and partial melting were suggested by the thermal analysis. Isothermal crystallization experiments showed that the alcohol-originated amorphous trehalose was eventually exclusively converted into -form crystals. The induction period (tind) before the start of isothermal crystallization was markedly shortened when alcohol was used as the solvent compared to water. The tind values for various amorphous sugar samples including the alcohol-originated ones could be correlated with difference between Tcry and the sample temperature. en-copyright= kn-copyright= en-aut-name=SekitohTakanari en-aut-sei=Sekitoh en-aut-mei=Takanari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OkamotoTakashi en-aut-sei=Okamoto en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FujiokaAkiho en-aut-sei=Fujioka en-aut-mei=Akiho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YoshiokaTomohiko en-aut-sei=Yoshioka en-aut-mei=Tomohiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TeruiShinji en-aut-sei=Terui en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ImanakaHiroyuki en-aut-sei=Imanaka en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IshidaNaoyuki en-aut-sei=Ishida en-aut-mei=Naoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ImamuraKoreyoshi en-aut-sei=Imamura en-aut-mei=Koreyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Division of Chemistry and Biochemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Division of Chemistry and Biochemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Division of Chemistry and Biochemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=6 en-affil=Division of Chemistry and Biochemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=7 en-affil=Division of Chemistry and Biochemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=8 en-affil=Division of Chemistry and Biochemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= en-keyword=Trehalose kn-keyword=Trehalose en-keyword=Crystallization kn-keyword=Crystallization en-keyword=Anhydrous crystal kn-keyword=Anhydrous crystal en-keyword=Methanol kn-keyword=Methanol en-keyword=Vacuum foam drying kn-keyword=Vacuum foam drying END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20231127 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Flavor retention characteristics of amorphous solid dispersion of flavors, prepared by vacuum-foam- and spray-drying under different conditions en-subtitle= kn-subtitle= en-abstract= kn-abstract=We investigated the powderization of flavoring substances, using an amorphous solid dispersion (ASD) technique, in which hydrophobic molecules are separately embedded in a water-soluble carrier matrix. Six flavors, five carrier forming materials (polyvinylpyrrolidone/disaccharides), two solvents (methanol/ethanol) and two drying methods (vacuum-foam-/spray-drying) were employed. The drying conditions for the two drying processes were first examined, and under the optimal drying conditions, various flavor-carrier combinations and compositions of ASD samples were prepared and their flavor retention after drying and during storage under a vacuum were compared. Results demonstrated that flavor loss during drying and storage was minimized when the material was vacuum-foam-dried with polyvinylpyrrolidone. Vacuum-foam-drying in the presence of -maltose or palatinose also resulted in a greater retention of flavor during drying and storage than a typical O/W emulsification-based powderization. These findings suggest that the ASD-based powderization of flavoring materials is a feasible alternative to the currently used produces. en-copyright= kn-copyright= en-aut-name=NittaYuna en-aut-sei=Nitta en-aut-mei=Yuna kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SatoHaruna en-aut-sei=Sato en-aut-mei=Haruna kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YamamotoRina en-aut-sei=Yamamoto en-aut-mei=Rina kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ImanakaHiroyuki en-aut-sei=Imanaka en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=IshidaNaoyuki en-aut-sei=Ishida en-aut-mei=Naoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ImamuraKoreyoshi en-aut-sei=Imamura en-aut-mei=Koreyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Department of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Department of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Department of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Department of Chemical Engineering and Material Sciences, Faculty of Science and Engineering, Doshisha University kn-affil= affil-num=6 en-affil=Department of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= en-keyword=Flavor kn-keyword=Flavor en-keyword=amorphous solid dispersion kn-keyword=amorphous solid dispersion en-keyword=vacuum foam drying kn-keyword=vacuum foam drying en-keyword=spray drying kn-keyword=spray drying en-keyword=polyvinylpyrrolidone kn-keyword=polyvinylpyrrolidone en-keyword=disaccharide kn-keyword=disaccharide END