start-ver=1.4 cd-journal=joma no-vol=24 cd-vols= no-issue=24 article-no= start-page=17294 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20231209 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Positive Regulation of S-Adenosylmethionine on Chondrocytic Differentiation via Stimulation of Polyamine Production and the Gene Expression of Chondrogenic Differentiation Factors en-subtitle= kn-subtitle= en-abstract= kn-abstract=S-adenosylmethionine (SAM) is considered to be a useful therapeutic agent for degenerative cartilage diseases, although its mechanism is not clear. We previously found that polyamines stimulate the expression of differentiated phenotype of chondrocytes. We also found that the cellular communication network factor 2 (CCN2) played a huge role in the proliferation and differentiation of chondrocytes. Therefore, we hypothesized that polyamines and CCN2 could be involved in the chondroprotective action of SAM. In this study, we initially found that exogenous SAM enhanced proteoglycan production but not cell proliferation in human chondrocyte-like cell line-2/8 (HCS-2/8) cells. Moreover, SAM enhanced gene expression of cartilage-specific matrix (aggrecan and type II collagen), Sry-Box transcription factor 9 (SOX9), CCN2, and chondroitin sulfate biosynthetic enzymes. The blockade of the methionine adenosyltransferase 2A (MAT2A) enzyme catalyzing intracellular SAM biosynthesis restrained the effect of SAM on chondrocytes. The polyamine level in chondrocytes was higher in SAM-treated culture than control culture. Additionally, Alcian blue staining and RT-qPCR indicated that the effects of SAM on the production and gene expression of aggrecan were reduced by the inhibition of polyamine synthesis. These results suggest that the stimulation of polyamine synthesis and gene expression of chondrogenic differentiation factors, such as CCN2, account for the mechanism underlying the action of SAM on chondrocytes. en-copyright= kn-copyright= en-aut-name=HoangLoc Dinh en-aut-sei=Hoang en-aut-mei=Loc Dinh kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AoyamaEriko en-aut-sei=Aoyama en-aut-mei=Eriko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HiasaMiki en-aut-sei=Hiasa en-aut-mei=Miki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OmoteHiroshi en-aut-sei=Omote en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KubotaSatoshi en-aut-sei=Kubota en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KubokiTakuo en-aut-sei=Kuboki en-aut-mei=Takuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TakigawaMasaharu en-aut-sei=Takigawa en-aut-mei=Masaharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Advanced Research Center for Oral and Craniofacial Sciences (ARCOCS), Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Advanced Research Center for Oral and Craniofacial Sciences (ARCOCS), Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Laboratory of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Laboratory of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Advanced Research Center for Oral and Craniofacial Sciences (ARCOCS), Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=S-adenosylmethionine kn-keyword=S-adenosylmethionine en-keyword=chondrocyte differentiation kn-keyword=chondrocyte differentiation en-keyword=CCN2 kn-keyword=CCN2 en-keyword=polyamine kn-keyword=polyamine en-keyword=ODC kn-keyword=ODC en-keyword=gene expression kn-keyword=gene expression END start-ver=1.4 cd-journal=joma no-vol=26 cd-vols= no-issue=6 article-no= start-page=940 end-page=949 dt-received= dt-revised= dt-accepted= dt-pub-year=2016 dt-pub=201611 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Involvement of multiple CCN family members in platelets that support regeneration of joint tissues en-subtitle= kn-subtitle= en-abstract= kn-abstract=OBJECTIVES: Platelet-rich plasma (PRP) has been widely used to enhance the regeneration of damaged joint tissues, such as osteoarthritic and rheumatoid arthritic cartilage. The aim of this study is to clarify the involvement of all of the CCN family proteins that are crucially associated with joint tissue regeneration. METHODS: Cyr61-CTGF-NOV (CCN) family proteins in human platelets and megakaryocytic cells were comprehensively analyzed by Western blotting analysis. Production of CCN family proteins in megakaryocytes in vivo was confirmed by immunofluorescence analysis of mouse bone marrow cells. Effects of CCN family proteins found in platelets on chondrocytes were evaluated by using human chondrocytic HCS-2/8 cells. RESULTS: Inclusion of CCN2, a mesenchymal tissue regenerator, was confirmed. Of note, CCN3, which counteracts CCN2, was newly found to be encapsulated in platelets. Interestingly, these two family members were not detectable in megakaryocytic cells, but their external origins were suggested. Furthermore, we found for the first time CCN5 and CCN1 that inhibits ADAMTS4 in both platelets and megakaryocytes. Finally, application of a CCN family cocktail mimicking platelets onto HCS-2/8 cells enhanced their chondrocytic phenotype. CONCLUSIONS: Multiple inclusion of CCN1, 2 and 3 in platelets was clarified, which supports the harmonized regenerative potential of PRP in joint therapeutics. en-copyright= kn-copyright= en-aut-name=HaraChikako en-aut-sei=Hara en-aut-mei=Chikako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KubotaSatoshi en-aut-sei=Kubota en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NishidaTakashi en-aut-sei=Nishida en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HiasaMiki en-aut-sei=Hiasa en-aut-mei=Miki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HattoriTakako en-aut-sei=Hattori en-aut-mei=Takako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=AoyamaEriko en-aut-sei=Aoyama en-aut-mei=Eriko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MoriyamaYoshinori en-aut-sei=Moriyama en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KamiokaHiroshi en-aut-sei=Kamioka en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TakigawaMasaharu en-aut-sei=Takigawa en-aut-mei=Masaharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Membrane Biochemistry , Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Advanced Research Center for Oral and Craniofacial Sciences , Okayama University Dental School kn-affil= affil-num=7 en-affil=Department of Membrane Biochemistry , Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Orthodontics , Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=CCN family kn-keyword=CCN family en-keyword=Cartilage kn-keyword=Cartilage en-keyword=Megakaryocyte kn-keyword=Megakaryocyte en-keyword=Platelet kn-keyword=Platelet en-keyword=Regeneration kn-keyword=Regeneration END start-ver=1.4 cd-journal=joma no-vol=292 cd-vols= no-issue=9 article-no= start-page=3909 end-page=3918 dt-received= dt-revised= dt-accepted= dt-pub-year=2017 dt-pub=201703 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Vesicular Polyamine Transporter Mediates Vesicular Storage and Release of Polyamine from Mast Cells en-subtitle= kn-subtitle= en-abstract= kn-abstract= Mast cells are secretory cells that play an important role in host defense by discharging various intragranular contents, such as histamine and serotonin, upon stimulation of Fc receptors. The granules also contain spermine and spermidine, which can act as modulators of mast cell function, although the mechanism underlying vesicular storage remains unknown. Vesicular polyamine transporter (VPAT), the fourth member of the SLC18 transporter family, is an active transporter responsible for vesicular storage of spermine and spermidine in neurons. In the present study, we investigated whether VPAT functions in mast cells. RT-PCR and Western blotting indicated VPAT expression in murine bone marrow-derived mast cells (BMMCs). Immunohistochemical analysis indicated that VPAT is colocalized with VAMP3 but not with histamine, serotonin, cathepsin D, VAMP2, or VAMP7. Membrane vesicles from BMMCs accumulated spermidine upon the addition of ATP in a reserpine- and bafilomycin A1-sensitive manner. BMMCs secreted spermine and spermidine upon the addition of either antigen or A23187 in the presence of Ca2+, and the antigen-mediated release, which was shown to be temperature-dependent and sensitive to bafilomycin A1 and tetanus toxin, was significantly suppressed by VPAT gene RNA interference. Under these conditions, expression of vesicular monoamine transporter 2 was unaffected, but antigen-dependent histamine release was significantly suppressed, which was recovered by the addition of 1 mm spermine. These results strongly suggest that VPAT is expressed and is responsible for vesicular storage of spermine and spermidine in novel secretory granules that differ from histamine- and serotonin-containing granules and is involved in vesicular release of these polyamines from mast cells. en-copyright= kn-copyright= en-aut-name=TakeuchiTomoya en-aut-sei=Takeuchi en-aut-mei=Tomoya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HaradaYuika en-aut-sei=Harada en-aut-mei=Yuika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MoriyamaSatomi en-aut-sei=Moriyama en-aut-mei=Satomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FurutaKazuyuki en-aut-sei=Furuta en-aut-mei=Kazuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TanakaSatoshi en-aut-sei=Tanaka en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name= en-aut-sei= en-aut-mei= kn-aut-name=MiyajiTakaaki kn-aut-sei=Miyaji kn-aut-mei=Takaaki aut-affil-num=6 ORCID= en-aut-name=OmoteHiroshi en-aut-sei=Omote en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MoriyamaYoshinori en-aut-sei=Moriyama en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HiasaMiki en-aut-sei=Hiasa en-aut-mei=Miki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil= Department of Immunobiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil= Department of Immunobiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Advanced Science Research Center, Okayama University kn-affil= affil-num=7 en-affil=Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8530, hiasa@okayama-u.ac.jp. kn-affil= en-keyword=histamine kn-keyword=histamine en-keyword=mast cell kn-keyword=mast cell en-keyword=polyamine kn-keyword=polyamine en-keyword=secretory granules kn-keyword=secretory granules en-keyword=spermine kn-keyword=spermine en-keyword=transporter kn-keyword=transporter en-keyword=vesicles kn-keyword=vesicles en-keyword=vesicular polyamine transporter kn-keyword=vesicular polyamine transporter END start-ver=1.4 cd-journal=joma no-vol=4 cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2014 dt-pub=20141030 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Identification of a mammalian vesicular polyamine transporter en-subtitle= kn-subtitle= en-abstract= kn-abstract=Spermine and spermidine act as neuromodulators upon binding to the extracellular site(s) of various ionotropic receptors, such as N-methyl-d-aspartate receptors. To gain access to the receptors, polyamines synthesized in neurons and astrocytes are stored in secretory vesicles and released upon depolarization. Although vesicular storage is mediated in an ATP-dependent, reserpine-sensitive fashion, the transporter responsible for this process remains unknown. SLC18B1 is the fourth member of the SLC18 transporter family, which includes vesicular monoamine transporters and vesicular acetylcholine transporter. Proteoliposomes containing purified human SLC18B1 protein actively transport spermine and spermidine by exchange of H+. SLC18B1 protein is predominantly expressed in the hippocampus and is associated with vesicles in astrocytes. SLC18B1 gene knockdown decreased both SLC18B1 protein and spermine/spermidine contents in astrocytes. These results indicated that SLC18B1 encodes a vesicular polyamine transporter (VPAT). en-copyright= kn-copyright= en-aut-name=HiasaMiki en-aut-sei=Hiasa en-aut-mei=Miki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MiyajiTakaaki en-aut-sei=Miyaji en-aut-mei=Takaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HarunaYuka en-aut-sei=Haruna en-aut-mei=Yuka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TakeuchiTomoya en-aut-sei=Takeuchi en-aut-mei=Tomoya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HaradaYuika en-aut-sei=Harada en-aut-mei=Yuika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MoriyamaSawako en-aut-sei=Moriyama en-aut-mei=Sawako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YamamotoAkitsugu en-aut-sei=Yamamoto en-aut-mei=Akitsugu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OmoteHiroshi en-aut-sei=Omote en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MoriyamaYoshinori en-aut-sei=Moriyama en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil= kn-affil=Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=2 en-affil= kn-affil=Advanced Science Research Center, Okayama University affil-num=3 en-affil= kn-affil=Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=4 en-affil= kn-affil=Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=5 en-affil= kn-affil=Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=6 en-affil= kn-affil=Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=7 en-affil= kn-affil=Faculty of Bioscience, Nagahama Institute of Bio-science and Technology affil-num=8 en-affil= kn-affil=Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=9 en-affil= kn-affil=Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences END