このエントリーをはてなブックマークに追加
ID 55418
FullText URL
fig.pdf 1.14 MB
Author
Furumatsu, Takayuki Department of Orthopaedic Surgery, Okayama University Graduate School Kaken ID publons
Maehara, Ami Department of Orthopaedic Surgery, Okayama University Graduate School
Ozaki, Toshifumi Department of Orthopaedic Surgery, Okayama University Graduate School Kaken ID publons researchmap
Abstract
BACKGROUND: Proper functioning of the meniscus depends on the composition and organization of its fibrocartilaginous extracellular matrix. We previously demonstrated that the avascular inner meniscus has a more chondrocytic phenotype compared with the outer meniscus. Inhibition of the Rho family GTPase ROCK, the major regulator of the actin cytoskeleton, stimulates the chondrogenic transcription factor Sry-type HMG box (SOX) 9-dependent α1(II) collagen (COL2A1) expression in inner meniscus cells. However, the crosstalk between ROCK inhibition, SOX9, and other transcription modulators on COL2A1 upregulation remains unclear in meniscus cells. The aim of this study was to investigate the role of SOX9-related transcriptional complex on COL2A1 expression under the inhibition of ROCK in human meniscus cells. METHODS: Human inner and outer meniscus cells were prepared from macroscopically intact lateral menisci. Cells were cultured in the presence or absence of ROCK inhibitor (ROCKi, Y27632). Gene expression, collagen synthesis, and nuclear translocation of SOX9 and Smad2/3 were analyzed. RESULTS: Treatment of ROCKi increased the ratio of type I/II collagen double positive cells derived from the inner meniscus. In real-time PCR analyses, expression of SOX9 and COL2A1 genes was stimulated by ROCKi treatment in inner meniscus cells. ROCKi treatment also induced nuclear translocation of SOX9 and phosphorylated Smad2/3 in immunohistological analyses. Complex formation between SOX9 and Smad3 was increased by ROCKi treatment in inner meniscus cells. Chromatin immunoprecipitation analyses revealed that association between SOX9/Smad3 transcriptional complex with the COL2A1 enhancer region was increased by ROCKi treatment. CONCLUSIONS: This study demonstrated that ROCK inhibition stimulated SOX9/Smad3-dependent COL2A1 expression through the immediate nuclear translocation of Smad3 in inner meniscus cells. Our results suggest that ROCK inhibition can stimulates type II collagen synthesis through the cooperative activation of Smad3 in inner meniscus cells. ROCKi treatment may be useful to promote the fibrochondrocytic healing of the injured inner meniscus.
Note
This is an Accepted Manuscript of an article published by Elsevier
Published Date
2016-07
Publication Title
Journal of Orthopaedic Science
Volume
volume21
Issue
issue4
Publisher
Elsevier
Start Page
524
End Page
529
ISSN
0949-2658
NCID
AA11052566
Content Type
Journal Article
language
English
OAI-PMH Set
岡山大学
Copyright Holders
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.ja
File Version
author
PubMed ID
DOI
Web of Science KeyUT
Related Url
isVersionOf https://doi.org/10.1016/j.jos.2016.02.013