start-ver=1.4 cd-journal=joma no-vol=6 cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2015 dt-pub=20150105 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=AtPHT4;4 is a chloroplast-localized ascorbate transporter in Arabidopsis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Ascorbate is an antioxidant and coenzyme for various metabolic reactions in vivo. In plant chloroplasts, high ascorbate levels are required to overcome photoinhibition caused by strong light. However, ascorbate is synthesized in the mitochondria and the molecular mechanisms underlying ascorbate transport into chloroplasts are unknown. Here we show that AtPHT4;4, a member of the phosphate transporter 4 family of Arabidopsis thaliana, functions as an ascorbate transporter. In vitro analysis shows that proteoliposomes containing the purified AtPHT4;4 protein exhibit membrane potential- and Cl-dependent ascorbate uptake. The AtPHT4;4 protein is abundantly expressed in the chloroplast envelope membrane. Knockout of AtPHT4;4 results in decreased levels of the reduced form of ascorbate in the leaves and the heat dissipation process of excessive energy during photosynthesis is compromised. Taken together, these observations indicate that the AtPHT4;4 protein is an ascorbate transporter at the chloroplast envelope membrane, which may be required for tolerance to strong light stress. en-copyright= kn-copyright= en-aut-name=MiyajiTakaaki en-aut-sei=Miyaji en-aut-mei=Takaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KuromoriTakashi en-aut-sei=Kuromori en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TakeuchiYu en-aut-sei=Takeuchi en-aut-mei=Yu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YamajiNaoki en-aut-sei=Yamaji en-aut-mei=Naoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YokoshoKengo en-aut-sei=Yokosho en-aut-mei=Kengo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ShimazawaAtsushi en-aut-sei=Shimazawa en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SugimotoEriko en-aut-sei=Sugimoto en-aut-mei=Eriko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OmoteHiroshi en-aut-sei=Omote en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MaJian Feng en-aut-sei=Ma en-aut-mei=Jian Feng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=ShinozakiKazuo en-aut-sei=Shinozaki en-aut-mei=Kazuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MoriyamaYoshinori en-aut-sei=Moriyama en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil= kn-affil=Advanced Science Research Center, Okayama University affil-num=2 en-affil= kn-affil=Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science affil-num=3 en-affil= kn-affil=Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=4 en-affil= kn-affil=Institute of Plant Science and Resources, Okayama University affil-num=5 en-affil= kn-affil=Institute of Plant Science and Resources, Okayama University affil-num=6 en-affil= kn-affil=Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=7 en-affil= kn-affil=Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science affil-num=8 en-affil= kn-affil=Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=9 en-affil= kn-affil=Institute of Plant Science and Resources, Okayama University affil-num=10 en-affil= kn-affil=Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science affil-num=11 en-affil= kn-affil=Advanced Science Research Center, Okayama University END start-ver=1.4 cd-journal=joma no-vol=70 cd-vols= no-issue=10 article-no= start-page=2717 end-page=2725 dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=20190506 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The tonoplast-localized transporter OsHMA3 plays an important role in maintaining Zn homeostasis in rice en-subtitle= kn-subtitle= en-abstract= kn-abstract=In order to respond to fluctuating zinc (Zn) in the environment, plants must have a system to control Zn homeostasis. However, how plants maintain an appropriate level of Zn during their growth and development is still poorly understood. In this study, we found that OsHMA3, a tonoplast-localized transporter for Zn/Cd, plays an important role in Zn homeostasis in rice. Accessions with the functional allele of OsHMA3 showed greater tolerance to high Zn than those with the non-functional allele based on root elongation test. A 67Zn-labeling experiment showed that accessions with loss of function of OsHMA3 had lower Zn accumulation in the roots but similar concentrations in the shoots compared with functional OsHMA3 accessions. When exposed to Zn-free growing medium, the concentration in the root cell sap was rapidly decreased in accessions with functional OsHMA3, but less dramatic changes were observed in non-functional accessions. A mobility experiment showed that more Zn in the roots was translocated to the shoots in accessions with functional OsHMA3. Higher expression levels of OsZIP4, OsZIP5, OsZIP8, and OsZIP10 were found in the roots of accessions with functional OsHMA3 in response to Zn deficiency. Taken together, our results indicate that OsHMA3 plays an important role in rice roots in both Zn detoxification and storage by sequestration into the vacuoles, depending on Zn concentration in the environment. en-copyright= kn-copyright= en-aut-name=CaiHongmei en-aut-sei=Cai en-aut-mei=Hongmei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HuangSheng en-aut-sei=Huang en-aut-mei=Sheng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=CheJing en-aut-sei=Che en-aut-mei=Jing kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YamajiNaoki en-aut-sei=Yamaji en-aut-mei=Naoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MaJian Feng en-aut-sei=Ma en-aut-mei=Jian Feng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=3 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=4 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=5 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= en-keyword=OsHMA3 kn-keyword=OsHMA3 en-keyword=vacuolar sequestration kn-keyword=vacuolar sequestration en-keyword=ZIP transporter kn-keyword=ZIP transporter en-keyword=Zn distribution kn-keyword=Zn distribution en-keyword= Zn root-to-shoot mobility kn-keyword= Zn root-to-shoot mobility en-keyword=Zn tolerance kn-keyword=Zn tolerance END start-ver=1.4 cd-journal=joma no-vol=71 cd-vols= no-issue=6 article-no= start-page=1792 end-page=1800 dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=20191130 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Decrosslinking enables visualization of RNA-guided endonuclease-in situ labeling signals for DNA sequences in plant tissues en-subtitle= kn-subtitle= en-abstract= kn-abstract=Information about the positioning of individual loci in the nucleus and the status of epigenetic modifications at these loci in each cell contained in plant tissue increases our understanding of how cells in a tissue coordinate gene expression. To obtain such information, a less damaging method of visualizing DNA in tissue that can be used with immunohistochemistry is required. Recently, a less damaging DNA visualization method using the CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/associated caspase 9) system, named RNA-guided endonuclease-in situ labeling (RGEN-ISL), was reported. This system made it possible to visualize a target DNA locus in a nucleus fixed on a glass slide with a set of simple operations, but it could not be applied to cells in plant tissues. In this work, we have developed a modified RGEN-ISL method with decrosslinking that made it possible to simultaneously detect the DNA loci and immunohistochemistry signals, including histone modification, in various types of plant tissues and species. en-copyright= kn-copyright= en-aut-name=NagakiK. en-aut-sei=Nagaki en-aut-mei=K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YamajiN. en-aut-sei=Yamaji en-aut-mei=N. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil= kn-affil= affil-num=2 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= en-keyword=Centromere kn-keyword=Centromere en-keyword=CRISPR/Cas9 kn-keyword=CRISPR/Cas9 en-keyword=epigenetic modifications kn-keyword=epigenetic modifications en-keyword=immunohistochemistry kn-keyword=immunohistochemistry en-keyword=in situ DNA visualization kn-keyword=in situ DNA visualization en-keyword=RNA-guided endonuclease-in situ labeling (RGEN-ISL) kn-keyword=RNA-guided endonuclease-in situ labeling (RGEN-ISL) en-keyword=telomere kn-keyword=telomere END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue=1 article-no= start-page=6236 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20211029 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Structural basis for high selectivity of a rice silicon channel Lsi1 en-subtitle= kn-subtitle= en-abstract= kn-abstract=Silicon (Si), the most abundant mineral element in the earth’s crust, is taken up by plant roots in the form of silicic acid through Low silicon rice 1 (Lsi1). Lsi1 belongs to the Nodulin 26-like intrinsic protein subfamily in aquaporin and shows high selectivity for silicic acid. To uncover the structural basis for this high selectivity, here we show the crystal structure of the rice Lsi1 at a resolution of 1.8 Å. The structure reveals transmembrane helical orientations different from other aquaporins, characterized by a unique, widely opened, and hydrophilic selectivity filter (SF) composed of five residues. Our structural, functional, and theoretical investigations provide a solid structural basis for the Si uptake mechanism in plants, which will contribute to secure and sustainable rice production by manipulating Lsi1 selectivity for different metalloids. en-copyright= kn-copyright= en-aut-name=SaitohYasunori en-aut-sei=Saitoh en-aut-mei=Yasunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=Mitani-UenoNamiki en-aut-sei=Mitani-Ueno en-aut-mei=Namiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SaitoKeisuke en-aut-sei=Saito en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MatsukiKengo en-aut-sei=Matsuki en-aut-mei=Kengo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HuangSheng en-aut-sei=Huang en-aut-mei=Sheng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YangLingli en-aut-sei=Yang en-aut-mei=Lingli kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YamajiNaoki en-aut-sei=Yamaji en-aut-mei=Naoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=IshikitaHiroshi en-aut-sei=Ishikita en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ShenJian-Ren en-aut-sei=Shen en-aut-mei=Jian-Ren kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MaJian Feng en-aut-sei=Ma en-aut-mei=Jian Feng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=SugaMichihiro en-aut-sei=Suga en-aut-mei=Michihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=2 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=3 en-affil=Research Center for Advanced Science and Technology, The University of Tokyo kn-affil= affil-num=4 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=6 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=7 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=8 en-affil=Research Center for Advanced Science and Technology, The University of Tokyo kn-affil= affil-num=9 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=10 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=11 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=45 cd-vols= no-issue=11 article-no= start-page=3322 end-page=3337 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220907 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=FE UPTAKE‐INDUCING PEPTIDE1 maintains Fe translocation by controlling Fe deficiency response genes in the vascular tissue of Arabidopsis en-subtitle= kn-subtitle= en-abstract= kn-abstract=FE UPTAKE-INDUCING PEPTIDE1 (FEP1), also named IRON MAN3 (IMA3) is a short peptide involved in the iron deficiency response in Arabidopsis thaliana. Recent studies uncovered its molecular function, but its physiological function in the systemic Fe response is not fully understood. To explore the physiological function of FEP1 in iron homoeostasis, we performed a transcriptome analysis using the FEP1 loss-of-function mutant fep1-1 and a transgenic line with oestrogen-inducible expression of FEP1. We determined that FEP1 specifically regulates several iron deficiency-responsive genes, indicating that FEP1 participates in iron translocation rather than iron uptake in roots. The iron concentration in xylem sap under iron-deficient conditions was lower in the fep1-1 mutant and higher in FEP1-induced transgenic plants compared with the wild type (WT). Perls staining revealed a greater accumulation of iron in the cortex of fep1-1 roots than in the WT root cortex, although total iron levels in roots were comparable in the two genotypes. Moreover, the fep1-1 mutation partially suppressed the iron overaccumulation phenotype in the leaves of the oligopeptide transporter3-2 (opt3-2) mutant. These data suggest that FEP1 plays a pivotal role in iron movement and in maintaining the iron quota in vascular tissues in Arabidopsis. en-copyright= kn-copyright= en-aut-name=OkadaSatoshi en-aut-sei=Okada en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=LeiGui J. en-aut-sei=Lei en-aut-mei=Gui J. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YamajiNaoki en-aut-sei=Yamaji en-aut-mei=Naoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HuangSheng en-aut-sei=Huang en-aut-mei=Sheng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MaJian F. en-aut-sei=Ma en-aut-mei=Jian F. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MochidaKeiichi en-aut-sei=Mochida en-aut-mei=Keiichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HirayamaTakashi en-aut-sei=Hirayama en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Group of Environmental Stress Response Systems, Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil=Group of Plant Stress Physiology, Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=3 en-affil=Group of Plant Stress Physiology, Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=4 en-affil=Group of Plant Stress Physiology, Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=5 en-affil=Group of Plant Stress Physiology, Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=6 en-affil=Crop Design Research Team, Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=7 en-affil=Group of Environmental Stress Response Systems, Institute of Plant Science and Resources, Okayama University kn-affil= en-keyword=oestrogen induction system kn-keyword=oestrogen induction system en-keyword=fep1-1 kn-keyword=fep1-1 en-keyword=iron-deficiency response kn-keyword=iron-deficiency response en-keyword=transcriptome kn-keyword=transcriptome END