start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=1 article-no= start-page=160 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220116 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Nectin-2 Acts as a Viral Entry Mediated Molecule That Binds to Human Herpesvirus 6B Glycoprotein B en-subtitle= kn-subtitle= en-abstract= kn-abstract=Human herpesvirus 6B (HHV-6B) is a T-lymphotropic virus and the etiological agent of exanthem subitum. HHV-6B is present in a latent or persistent form after primary infection and is produced in the salivary glands or transmitted to this organ. Infected individuals continue to secrete the virus in their saliva, which is thus considered a source for virus transmission. HHV-6B primarily propagates in T cells because its entry receptor, CD134, is mainly expressed by activated T cells. The virus then spreads to the host's organs, including the salivary glands, nervous system, and liver. However, CD134 expression is not detected in these organs. Therefore, HHV-6B may be entering cells via a currently unidentified cell surface molecule, but the mechanisms for this have not yet been investigated. In this study, we investigated a CD134-independent virus entry mechanism in the parotid-derived cell line HSY. First, we confirmed viral infection in CD134-membrane unanchored HSY cells. We then determined that nectin cell adhesion molecule 2 (nectin-2) mediated virus entry and that HHV-6B-insensitive T-cells transduced with nectin-2 were transformed into virus-permissive cells. We also found that virus entry was significantly reduced in nectin-2 knockout parotid-derived cells. Furthermore, we showed that HHV-6B glycoprotein B (gB) interacted with the nectin-2 V-set domain. The results suggest that nectin-2 acts as an HHV-6B entry-mediated protein. en-copyright= kn-copyright= en-aut-name=OgawaHirohito en-aut-sei=Ogawa en-aut-mei=Hirohito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FujikuraDaisuke en-aut-sei=Fujikura en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NambaHikaru en-aut-sei=Namba en-aut-mei=Hikaru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YamashitaNobuko en-aut-sei=Yamashita en-aut-mei=Nobuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HondaTomoyuki en-aut-sei=Honda en-aut-mei=Tomoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YamadaMasao en-aut-sei=Yamada en-aut-mei=Masao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Virology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=School of Veterinary Medicine, Kitasato University kn-affil= affil-num=3 en-affil=Department of Virology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Virology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Virology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Virology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=HHV-6B kn-keyword=HHV-6B en-keyword=nectin-2 kn-keyword=nectin-2 en-keyword=CD112 kn-keyword=CD112 en-keyword=CD134 kn-keyword=CD134 en-keyword=virus entry kn-keyword=virus entry en-keyword=glycoprotein B kn-keyword=glycoprotein B END start-ver=1.4 cd-journal=joma no-vol=81 cd-vols= no-issue=8 article-no= start-page=1191 end-page=1196 dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=20190824 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Risk assessment for hepatitis E virus infection from domestic pigs introduced into an experimental animal facility in a medical school en-subtitle= kn-subtitle= en-abstract= kn-abstract= Hepatitis E virus (HEV) is known to cause zoonotic infections from pigs, wild boars and deer. Domestic pigs have been used as an experimental animal model in medical research and training; however, the risks of HEV infection from pigs during animal experiments are largely unknown. Here, we retrospectively investigated the seroprevalence and detection rates of viral RNA in 73 domestic pigs (average 34.5 kg) introduced into an animal experimental facility in a medical school during 2012-2016. We detected anti-HEV immunoglobulin G antibodies in 24 of 73 plasma samples (32.9%), though none of the samples were positive for viral RNA. Plasma samples of 18 pigs were sequentially monitored and were classified into four patterns: sustained positive (5 pigs), sustained negative (5 pigs), conversion to positive (6 pigs) and conversion to negative (2 pigs). HEV genomes were detected in 2 of 4 liver samples from pigs that were transported from the same farm during 2016-2017. Two viral sequences of the overlapping open reading frame (ORF) 2/3 region (97 bp) were identical and phylogenetically fell into genotype 3. A 459-bp length of the ORF2 region of an amplified fragment from a pig transported in 2017 was clustered with the wbJYG1 isolate (subgenotype 3b) with 91.5% (420/459 bp) nucleotide identity. Based on our results, we suggest that domestic pigs introduced into animal facilities carry a potential risk of HEV infection to researchers, trainees and facility staff. Continuous surveillance and precautions are important to prevent HEV infection in animal facilities. en-copyright= kn-copyright= en-aut-name=OgawaHirohito en-aut-sei=Ogawa en-aut-mei=Hirohito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HirayamaHaruko en-aut-sei=Hirayama en-aut-mei=Haruko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TanakaSatsuki en-aut-sei=Tanaka en-aut-mei=Satsuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YataNorio en-aut-sei=Yata en-aut-mei=Norio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NambaHikaru en-aut-sei=Namba en-aut-mei=Hikaru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YamashitaNobuko en-aut-sei=Yamashita en-aut-mei=Nobuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YonemitsuKenzo en-aut-sei=Yonemitsu en-aut-mei=Kenzo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MaedaKen en-aut-sei=Maeda en-aut-mei=Ken kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MominokiKatsumi en-aut-sei=Mominoki en-aut-mei=Katsumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=YamadaMasao en-aut-sei=Yamada en-aut-mei=Masao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Virology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Animal Resources, Advanced Science Research Center, Okayama University kn-affil= affil-num=3 en-affil=Department of Virology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Animal Resources, Advanced Science Research Center, Okayama University kn-affil= affil-num=5 en-affil=Department of Virology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Virology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University kn-affil= affil-num=8 en-affil=Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University kn-affil= affil-num=9 en-affil=Department of Animal Resources, Advanced Science Research Center, Okayama University kn-affil= affil-num=10 en-affil=Department of Virology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, kn-affil= en-keyword=animal experimental facility kn-keyword=animal experimental facility en-keyword=domestic pig kn-keyword=domestic pig en-keyword=hepatitis E virus kn-keyword=hepatitis E virus en-keyword=zoonosis kn-keyword=zoonosis END start-ver=1.4 cd-journal=joma no-vol=69 cd-vols= no-issue=5 article-no= start-page=279 end-page=290 dt-received= dt-revised= dt-accepted= dt-pub-year=2015 dt-pub=201510 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Inhibitory Effects of Edaravone, a Free Radical Scavenger, on Cytokine-induced Hyperpermeability of Human Pulmonary Microvascular Endothelial Cells:A Comparison with Dexamethasone and Nitric Oxide Synthase Inhibitor en-subtitle= kn-subtitle= en-abstract= kn-abstract=Lung hyperpermeability affects the development of acute respiratory distress syndrome (ARDS), but therapeutic strategies for the control of microvascular permeability have not been established. We examined the effects of edaravone, dexamethasone, and N-monomethyl-L-arginine (L-NMMA) on permeability changes in human pulmonary microvascular endothelial cells (PMVEC) under a hypercytokinemic state. Human PMVEC were seeded in a Boyden chamber. After monolayer confluence was achieved, the culture media were replaced respectively by culture media containing edaravone, dexamethasone, and L-NMMA. After 24-h incubation, the monolayer was stimulated with tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). Fluorescein-labeled dextran was added. Then the trans-human PMVEC leak was measured. Expressions of vascular endothelial-cadherin (VE-cadherin) and zonula occludens-1 protein (ZO-1) were evaluated using real-time quantitative polymerase chain reaction and immunofluorescence microscopy. The results showed that TNF-α+IL-1β markedly increased pulmonary microvascular permeability. Pretreatment with edaravone, dexamethasone, or L-NMMA attenuated the hyperpermeability and inhibited the cytokine-induced reduction of VE-cadherin expression on immunofluorescence staining. Edaravone and dexamethasone increased the expression of ZO-1 at both the mRNA and protein levels. Edaravone and dexamethasone inhibited the permeability changes of human PMVEC, at least partly through an enhancement of VE-cadherin. Collectively, these results suggest a potential therapeutic approach for intervention in patients with ARDS. en-copyright= kn-copyright= en-aut-name=SaitoYukie en-aut-sei=Saito en-aut-mei=Yukie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FujiiYousuke en-aut-sei=Fujii en-aut-mei=Yousuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YashiroMasato en-aut-sei=Yashiro en-aut-mei=Masato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TsugeMitsuru en-aut-sei=Tsuge en-aut-mei=Mitsuru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NosakaNobuyuki en-aut-sei=Nosaka en-aut-mei=Nobuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YamashitaNobuko en-aut-sei=Yamashita en-aut-mei=Nobuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YamadaMutsuko en-aut-sei=Yamada en-aut-mei=Mutsuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TsukaharaHirokazu en-aut-sei=Tsukahara en-aut-mei=Hirokazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MorishimaTsuneo en-aut-sei=Morishima en-aut-mei=Tsuneo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil= kn-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=2 en-affil= kn-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=3 en-affil= kn-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=4 en-affil= kn-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=5 en-affil= kn-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=6 en-affil= kn-affil=Department of Virology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=7 en-affil= kn-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=8 en-affil= kn-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=9 en-affil= kn-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences en-keyword=pulmonary microvascular endothelial cells kn-keyword=pulmonary microvascular endothelial cells en-keyword=permeability kn-keyword=permeability en-keyword=edaravone kn-keyword=edaravone en-keyword=vascular endothelial-cadherin kn-keyword=vascular endothelial-cadherin en-keyword=zonula occludens-1 protein kn-keyword=zonula occludens-1 protein END start-ver=1.4 cd-journal=joma no-vol=125 cd-vols= no-issue=2 article-no= start-page=109 end-page=112 dt-received= dt-revised= dt-accepted= dt-pub-year=2013 dt-pub=20130801 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Therapeutic effects of redox-active protein thioredoxin(TRX)-1 in influenza-virus-induced pneumonia in mice kn-title=マウスインフルエンザ肺炎におけるレドックス制御蛋白チオレドキシン(TRX-1)の治療的効果 en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=YashiroMasato en-aut-sei=Yashiro en-aut-mei=Masato kn-aut-name=八代将登 kn-aut-sei=八代 kn-aut-mei=将登 aut-affil-num=1 ORCID= en-aut-name=TsukaharaHirokazu en-aut-sei=Tsukahara en-aut-mei=Hirokazu kn-aut-name=塚原宏一 kn-aut-sei=塚原 kn-aut-mei=宏一 aut-affil-num=2 ORCID= en-aut-name=MatsukawaAkihiro en-aut-sei=Matsukawa en-aut-mei=Akihiro kn-aut-name=松川昭博 kn-aut-sei=松川 kn-aut-mei=昭博 aut-affil-num=3 ORCID= en-aut-name=YamadaMutsuko en-aut-sei=Yamada en-aut-mei=Mutsuko kn-aut-name=山田睦子 kn-aut-sei=山田 kn-aut-mei=睦子 aut-affil-num=4 ORCID= en-aut-name=FujiiYosuke en-aut-sei=Fujii en-aut-mei=Yosuke kn-aut-name=藤井洋輔 kn-aut-sei=藤井 kn-aut-mei=洋輔 aut-affil-num=5 ORCID= en-aut-name=NagaokaYoshiharu en-aut-sei=Nagaoka en-aut-mei=Yoshiharu kn-aut-name=長岡義晴 kn-aut-sei=長岡 kn-aut-mei=義晴 aut-affil-num=6 ORCID= en-aut-name=TsugeMitsuru en-aut-sei=Tsuge en-aut-mei=Mitsuru kn-aut-name=津下充 kn-aut-sei=津下 kn-aut-mei=充 aut-affil-num=7 ORCID= en-aut-name=YamashitaNobuko en-aut-sei=Yamashita en-aut-mei=Nobuko kn-aut-name=山下信子 kn-aut-sei=山下 kn-aut-mei=信子 aut-affil-num=8 ORCID= en-aut-name=ItoToshihiro en-aut-sei=Ito en-aut-mei=Toshihiro kn-aut-name=伊藤利洋 kn-aut-sei=伊藤 kn-aut-mei=利洋 aut-affil-num=9 ORCID= en-aut-name=YamadaMasao en-aut-sei=Yamada en-aut-mei=Masao kn-aut-name=山田雅夫 kn-aut-sei=山田 kn-aut-mei=雅夫 aut-affil-num=10 ORCID= en-aut-name=MasutaniHiroshi en-aut-sei=Masutani en-aut-mei=Hiroshi kn-aut-name=増谷弘 kn-aut-sei=増谷 kn-aut-mei=弘 aut-affil-num=11 ORCID= en-aut-name=YodoiJunji en-aut-sei=Yodoi en-aut-mei=Junji kn-aut-name=淀井淳司 kn-aut-sei=淀井 kn-aut-mei=淳司 aut-affil-num=12 ORCID= en-aut-name=MorishimaTsuneo en-aut-sei=Morishima en-aut-mei=Tsuneo kn-aut-name=森島恒雄 kn-aut-sei=森島 kn-aut-mei=恒雄 aut-affil-num=13 ORCID= affil-num=1 en-affil= kn-affil=岡山大学大学院医歯薬学総合研究科 小児医科学 affil-num=2 en-affil= kn-affil=岡山大学大学院医歯薬学総合研究科 小児医科学 affil-num=3 en-affil= kn-affil=岡山大学大学院医歯薬学総合研究科 病理学(免疫病理) affil-num=4 en-affil= kn-affil=岡山大学大学院医歯薬学総合研究科 小児医科学 affil-num=5 en-affil= kn-affil=岡山大学大学院医歯薬学総合研究科 小児医科学 affil-num=6 en-affil= kn-affil=岡山大学大学院医歯薬学総合研究科 小児医科学 affil-num=7 en-affil= kn-affil=岡山大学大学院医歯薬学総合研究科 小児医科学 affil-num=8 en-affil= kn-affil=岡山大学大学院医歯薬学総合研究科 小児医科学 affil-num=9 en-affil= kn-affil=岡山大学大学院医歯薬学総合研究科 病理学(免疫病理) affil-num=10 en-affil= kn-affil=岡山大学大学院医歯薬学総合研究科 病原ウイルス学 affil-num=11 en-affil= kn-affil=京都大学ウイルス研究所 生体応答学研究部門 affil-num=12 en-affil= kn-affil=京都大学ウイルス研究所 生体応答学研究部門 affil-num=13 en-affil= kn-affil=岡山大学大学院医歯薬学総合研究科 小児医科学 en-keyword=acute lung injury kn-keyword=acute lung injury en-keyword=cytokine kn-keyword=cytokine en-keyword=influenza virus kn-keyword=influenza virus en-keyword=oxidative stress kn-keyword=oxidative stress en-keyword=thioredoxin-1 kn-keyword=thioredoxin-1 END start-ver=1.4 cd-journal=joma no-vol=41 cd-vols= no-issue=1 article-no= start-page=171 end-page=181 dt-received= dt-revised= dt-accepted= dt-pub-year=2013 dt-pub=201301 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Redox-Active Protein Thioredoxin-1 Administration Ameliorates Influenza A Virus (H1N1)-Induced Acute Lung Injury in Mice en-subtitle= kn-subtitle= en-abstract= kn-abstract=Objectives: Influenza virus infections can cause severe acute lung injury leading to significant morbidity and mortality. Thioredoxin-1 is a redox-active defensive protein induced in response to stress conditions. Animal experiments have revealed that thioredoxin-1 has protective effects against various severe disorders. This study was undertaken to evaluate the protective effects of recombinant human thioredoxin-1 administration on influenza A virus (H1N1)-induced acute lung injury in mice. Design: Prospective animal trial. Setting: Research laboratory. Subjects: Nine-week-old male C57BL/6 mice inoculated with H1N1. Intervention: The mice were divided into a vehicle-treated group and recombinant human thioredoxin-1-treated group. For survival rate analysis, the vehicle or recombinant human thioredoxin-1 was administered intraperitoneally every second day from day -1 to day 13. For lung lavage and pathological analyses, vehicle or recombinant human thioredoxin-1 was administered intraperitoneally on days 1, 1, and 3. Measurements and Main Results: Lung lavage and pathological analyses were performed at 24, 72, and 120 hrs after inoculation. The recombinant human thioredoxin-1 treatment significantly improved the survival rate of H1N1-inoculated mice, although the treatment did not affect virus propagation in the lung. The treatment significantly attenuated the histological changes and neutrophil infiltration in the lung of H1N1-inoculated mice. The treatment significantly attenuated the production of tumor necrosis factor-a and chemokine (C-X-C motif) ligand 1 in the lung and oxidative stress enhancement, which were observed in H1N1-inoculated mice. H1N1 induced expressions of tumor necrosis factor-a and chemokine (C-X-C motif) ligand 1 in murine lung epithelial cells MLE-12, which were inhibited by the addition of recombinant human thioredoxin-1. The recombinant human thioredoxin-1 treatment started 30 mins after H1N1 inoculation also significantly improved the survival of the mice. Conclusions: Exogenous administration of recombinant human thioredoxin-1 significantly improved the survival rate and attenuated lung histological changes in the murine model of influenza pneumonia. The protective mechanism of thioredoxin-1 might be explained by its potent antioxidative and anti-inflammatory actions. Consequently, recombinant human thioredoxin-1 might be a possible pharmacological strategy for severe influenza virus infection in humans. (Crit Care Med 2013; 41:171-181) en-copyright= kn-copyright= en-aut-name=YashiroMasato en-aut-sei=Yashiro en-aut-mei=Masato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TsukaharaHirokazu en-aut-sei=Tsukahara en-aut-mei=Hirokazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MatsukawaAkihiro en-aut-sei=Matsukawa en-aut-mei=Akihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YamadaMutsuko en-aut-sei=Yamada en-aut-mei=Mutsuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=FujiiYosuke en-aut-sei=Fujii en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NagaokaYoshiharu en-aut-sei=Nagaoka en-aut-mei=Yoshiharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TsugeMitsuru en-aut-sei=Tsuge en-aut-mei=Mitsuru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YamashitaNobuko en-aut-sei=Yamashita en-aut-mei=Nobuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ItoToshihiro en-aut-sei=Ito en-aut-mei=Toshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=YamadaMasao en-aut-sei=Yamada en-aut-mei=Masao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MasutaniHiroshi en-aut-sei=Masutani en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Pediat affil-num=2 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Pediat affil-num=3 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Pathol & Expt Med affil-num=4 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Pediat affil-num=5 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Pediat affil-num=6 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Pediat affil-num=7 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Pediat affil-num=8 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Pediat affil-num=9 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Pathol & Expt Med affil-num=10 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Virol affil-num=11 en-affil= kn-affil=Kyoto Univ, Inst Virus Res, Dept Biol Responses en-keyword=acute lung injury kn-keyword=acute lung injury en-keyword=cytokine kn-keyword=cytokine en-keyword=influenza virus kn-keyword=influenza virus en-keyword=mouse kn-keyword=mouse en-keyword=oxidative stress kn-keyword=oxidative stress en-keyword=thioredoxin-1 kn-keyword=thioredoxin-1 END start-ver=1.4 cd-journal=joma no-vol=124 cd-vols= no-issue=1 article-no= start-page=83 end-page=85 dt-received= dt-revised= dt-accepted= dt-pub-year=2012 dt-pub=20120401 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Complications of hand-foot-mouth disease kn-title=手足口病の合併症 en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=YamashitaNobuko en-aut-sei=Yamashita en-aut-mei=Nobuko kn-aut-name=山下信子 kn-aut-sei=山下 kn-aut-mei=信子 aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=岡山大学大学院医歯薬学総合研究科 病原ウイルス学 END start-ver=1.4 cd-journal=joma no-vol=59 cd-vols= no-issue=6 article-no= start-page=239 end-page=246 dt-received= dt-revised= dt-accepted= dt-pub-year=2005 dt-pub=200512 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Virological aspects of Epstein-Barr virus infections. en-subtitle= kn-subtitle= en-abstract= kn-abstract=
Epstein-Barr virus (EBV) is usually maintained in an asymptomatic and latent form by the host immune system, and primarily by EBV-specific cytotoxic T cells (CTLs). However, EBV has been linked to several refractory diseases such as EBV-associated hemophagocytic syndrome(EBV-AHS) and chronic active EBV infection (CAEBV). In these ectopic diseases, EBV infects T/NK cells, causing severe immunodeficiency with a very high EBV load. In recent years, the laboratory procedure to assess these types of EBV infections has been improved. In particular, real-time polymerase chain reaction (PCR) has been used to quantify the EBV load, and the MHC: peptide tetramer assay has been used to quantitate EBV-specific CTLs; these tests have been employed for the management of the illnesses associated with EBV infection. Here, we have reviewed the recent progress in the clinical application of these assays. The pathogenesis of EBV-infected T/NK cells, and the host immune response to infection, including the roles carried out by innate immunity and inflammatory cytokines, are likely to be revealed in the future.
en-copyright= kn-copyright= en-aut-name=YamashitaNobuko en-aut-sei=Yamashita en-aut-mei=Nobuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KimuraHiroshi en-aut-sei=Kimura en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MorishimaTsuneo en-aut-sei=Morishima en-aut-mei=Tsuneo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil= kn-affil=Okayama University affil-num=2 en-affil= kn-affil=Nagoya University affil-num=3 en-affil= kn-affil=Okayama University en-keyword=chronic active Epstein-Barr virus infection kn-keyword=chronic active Epstein-Barr virus infection en-keyword=Epstein-Barr virus-associated hemophagocytic syndrome kn-keyword=Epstein-Barr virus-associated hemophagocytic syndrome en-keyword=Real-time PCR kn-keyword=Real-time PCR en-keyword=tetramer kn-keyword=tetramer END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2003 dt-pub=20030630 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=小児急性リンパ性白血病患児における成長障害の検討 kn-title=Analysis of linear growth in survivors of childhood acute lymphoblastic leukemia en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=YamashitaNobuko en-aut-sei=Yamashita en-aut-mei=Nobuko kn-aut-name=山下信子 kn-aut-sei=山下 kn-aut-mei=信子 aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=岡山大学 END