このエントリーをはてなブックマークに追加
ID 60848
FullText URL
fulltext.pdf 7.42 MB
Author
Yano, Shuya Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Kaken ID researchmap
Tazawa, Hiroshi Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences ORCID Kaken ID publons researchmap
Kagawa, Shunsuke Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences ORCID Kaken ID publons researchmap
Fujiwara, Toshiyoshi Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences ORCID Kaken ID publons researchmap
Hoffman, Robert M. AntiCancer, Inc.
Abstract
Progress in chemotherapy of solid cancer has been tragically slow due, in large part, to the chemoresistance of quiescent cancer cells in tumors. The fluorescence ubiquitination cell-cycle indicator (FUCCI) was developed in 2008 by Miyawaki et al., which color-codes the phases of the cell cycle in real-time. FUCCI utilizes genes linked to different color fluorescent reporters that are only expressed in specific phases of the cell cycle and can, thereby, image the phases of the cell cycle in real-time. Intravital real-time FUCCI imaging within tumors has demonstrated that an established tumor comprises a majority of quiescent cancer cells and a minor population of cycling cancer cells located at the tumor surface or in proximity to tumor blood vessels. In contrast to most cycling cancer cells, quiescent cancer cells are resistant to cytotoxic chemotherapy, most of which target cells in S/G2/M phases. The quiescent cancer cells can re-enter the cell cycle after surviving treatment, which suggests the reason why most cytotoxic chemotherapy is often ineffective for solid cancers. Thus, quiescent cancer cells are a major impediment to effective cancer therapy. FUCCI imaging can be used to effectively target quiescent cancer cells within tumors. For example, we review how FUCCI imaging can help to identify cell-cycle-specific therapeutics that comprise decoy of quiescent cancer cells from G1 phase to cycling phases, trapping the cancer cells in S/G2 phase where cancer cells are mostly sensitive to cytotoxic chemotherapy and eradicating the cancer cells with cytotoxic chemotherapy most active against S/G2 phase cells. FUCCI can readily image cell-cycle dynamics at the single cell level in real-time in vitro and in vivo. Therefore, visualizing cell cycle dynamics within tumors with FUCCI can provide a guide for many strategies to improve cell-cycle targeting therapy for solid cancers.
Keywords
cell cycle
fluorescent proteins
FUCCI
imaging
targeted cancer therapy
quiescent cancer cells
decoy
chemotherapy
Published Date
2020-09-17
Publication Title
Cancers
Volume
volume12
Issue
issue9
Publisher
MDPI
Start Page
2655
ISSN
2072-6694
Content Type
Journal Article
language
English
OAI-PMH Set
岡山大学
Copyright Holders
© 2020 by the authors.
File Version
publisher
PubMed ID
DOI
Web of Science KeyUT
Related Url
isVersionOf https://doi.org/10.3390/cancers12092655
License
http://creativecommons.org/licenses/by/4.0/
Funder Name
Ministry of Education, Culture, Sports, Science and Technology
助成番号
18K16313