start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue= article-no= start-page=647684 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210810 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Purification, Characterization, and Gene Expression of Rice Endo-beta-N-Acetylglucosaminidase, Endo-Os en-subtitle= kn-subtitle= en-abstract= kn-abstract=In the endoplasmic reticulum-associated degradation system of plant and animal cells, high-mannose type free N-glycans (HMT-FNGs) are produced from misfolded glycoproteins prior to proteasomal degradation, and two enzymes, cytosolic peptide:N-glycanase (cPNGase) and endo-beta-N-acetylglucosaminidase (endo-beta-GlcNAc-ase), are involved in the deglycosylation. Although the physiological functions of these FNGs in plant growth and development remain to be elucidated, detailed characterization of cPNGase and endo-beta-GlcNAc-ase is required. In our previous work, we described the purification, characterization, and subcellular distribution of some plant endo-beta-GlcNAc-ases and preliminarily reported the gene information of rice endo-beta-GlcNAc-ase (Endo-Os). Furthermore, we analyzed the changes in gene expression of endo-beta-GlcNAc-ase during tomato fruit maturation and constructed a mutant line of Arabidopsis thaliana, in which the two endo-beta-GlcNAc-ase genes were knocked-out based on the Endo-Os gene. In this report, we describe the purification, characterization, amino acid sequence, and gene cloning of Endo-Os in detail. Purified Endo-Os, with an optimal pH of 6.5, showed high activity for high-mannose type N-glycans bearing the Man alpha 1-2Man alpha 1-3Man beta 1 unit; this substrate specificity was almost the same as that of other plant endo-beta-GlcNAc-ases, suggesting that Endo-Os plays a critical role in the production of HTM-FNGs in the cytosol. Electrospray ionization-mass spectrometry analysis of the tryptic peptides revealed 17 internal amino acid sequences, including the C terminus; the N-terminal sequence could not be identified due to chemical modification. These internal amino acid sequences were consistent with the amino acid sequence (UniProt ID: Q5W6R1) deduced from the Oryza sativa cDNA clone AK112067 (gene ID: Os05g0346500). Recombinant Endo-Os expressed in Escherichia coli using cDNA showed the same enzymatic properties as those of native Endo-Os. en-copyright= kn-copyright= en-aut-name=MaedaMegumi en-aut-sei=Maeda en-aut-mei=Megumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OkamotoNaoko en-aut-sei=Okamoto en-aut-mei=Naoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ArakiNode en-aut-sei=Araki en-aut-mei=Node kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KimuraYoshinobu en-aut-sei=Kimura en-aut-mei=Yoshinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=3 en-affil=Department of Tumor Genetics and Biology, Graduate School of Medical Sciences, Kumamoto University kn-affil= affil-num=4 en-affil=Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=endo-beta-N-acetylglucosaminidase kn-keyword=endo-beta-N-acetylglucosaminidase en-keyword=free N-glycans kn-keyword=free N-glycans en-keyword=Oryza sativa kn-keyword=Oryza sativa en-keyword=ER associated degradation kn-keyword=ER associated degradation en-keyword=peptide:N-glycanase kn-keyword=peptide:N-glycanase END start-ver=1.4 cd-journal=joma no-vol=11 cd-vols= no-issue= article-no= start-page=610124 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210118 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Cytosolic Free N-Glycans Are Retro-Transported Into the Endoplasmic Reticulum in Plant Cells en-subtitle= kn-subtitle= en-abstract= kn-abstract=During endoplasmic reticulum (ER)-associated degradation, free N-glycans (FNGs) are produced from misfolded nascent glycoproteins via the combination of the cytosolic peptide N-glycanase (cPNGase) and endo-beta-N-acetylglucosaminidase (ENGase) in the plant cytosol. The resulting high-mannose type (HMT)-FNGs, which carry one GlcNAc residue at the reducing end (GN1-FNGs), are ubiquitously found in developing plant cells. In a previous study, we found that HMT-FNGs assisted in protein folding and inhibited beta-amyloid fibril formation, suggesting a possible biofunction of FNGs involved in the protein folding system. However, whether these HMT-FNGs occur in the ER, an organelle involved in protein folding, remained unclear. On the contrary, we also reported the presence of plant complex type (PCT)-GN1-FNGs, which carry the Lewis(a) epitope at the non-reducing end, indicating that these FNGs had been fully processed in the Golgi apparatus. Since plant ENGase was active toward HMT-N-glycans but not PCT-N-glycans that carry beta 1-2xylosyl and/or alpha 1-3 fucosyl residue(s), these PCT-GN1-FNGs did not appear to be produced from fully processed glycoproteins that harbored PCT-N-glycans via ENGase activity. Interestingly, PCT-GN1-FNGs were found in the extracellular space, suggesting that HMT-GN1-FNGs formed in the cytosol might be transported back to the ER and processed in the Golgi apparatus through the protein secretion pathway. As the first step in elucidating the production mechanism of PCT-GN1-FNGs, we analyzed the structures of free oligosaccharides in plant microsomes and proved that HMT-FNGs (Man(9-7)GlcNAc(1) and Man(9-8)GlcNAc(2)) could be found in microsomes, which almost consist of the ER compartments. en-copyright= kn-copyright= en-aut-name=KatsubeMakoto en-aut-sei=Katsube en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=EbaraNatsuki en-aut-sei=Ebara en-aut-mei=Natsuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MaedaMegumi en-aut-sei=Maeda en-aut-mei=Megumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KimuraYoshinobu en-aut-sei=Kimura en-aut-mei=Yoshinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=3 en-affil=Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=4 en-affil=Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=free N-glycans kn-keyword=free N-glycans en-keyword=ER-associated degradation kn-keyword=ER-associated degradation en-keyword=peptide:N-glycanase kn-keyword=peptide:N-glycanase en-keyword=endo-beta-N-acetylglucosaminidase kn-keyword=endo-beta-N-acetylglucosaminidase en-keyword=plant glycoproteins kn-keyword=plant glycoproteins END start-ver=1.4 cd-journal=joma no-vol=83 cd-vols= no-issue=7 article-no= start-page=1310 end-page=1314 dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=20190425 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Plant complex type free N-glycans occur in tomato xylem sap en-subtitle= kn-subtitle= en-abstract= kn-abstract= Free N-glycans (FNGs) are ubiquitous in growing plants. Further, acidic peptide:N-glycanase is believed to be involved in the production of plant complex-type FNGs (PCT-FNGs) during the degradation of dysfunctional glycoproteins. However, the distribution of PCT-FNGs in growing plants has not been analyzed. Here, we report the occurrence of PCT-FNGs in the xylem sap of the stem of the tomato plant. en-copyright= kn-copyright= en-aut-name=TsujimoriYuta en-aut-sei=Tsujimori en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OguraMikako en-aut-sei=Ogura en-aut-mei=Mikako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=Md. Ziaur Rahman en-aut-sei=Md. Ziaur Rahman en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MaedaMegumi en-aut-sei=Maeda en-aut-mei=Megumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KimuraYoshinobu en-aut-sei=Kimura en-aut-mei=Yoshinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science , Okayama University kn-affil= affil-num=2 en-affil=Faculty of Agriculture, Division of Agricultural Science , Okayama University kn-affil= affil-num=3 en-affil=Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science , Okayama University kn-affil= affil-num=4 en-affil=Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science , Okayama University kn-affil= affil-num=5 en-affil=Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science , Okayama University kn-affil= en-keyword=Free -glycan kn-keyword=Free -glycan en-keyword=PNGase kn-keyword=PNGase en-keyword=deglycosylation kn-keyword=deglycosylation en-keyword=solanum lycopersicum kn-keyword=solanum lycopersicum en-keyword=xylem sap kn-keyword=xylem sap END start-ver=1.4 cd-journal=joma no-vol=108 cd-vols= no-issue= article-no= start-page=15 end-page=18 dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=20190201 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Structural Features of Pollen Allergens N-Glycans and Synthesis of Glycopolymer carrying Multivalent N-glycans kn-title=花粉アレルゲンの糖鎖構造特性と糖鎖ポリマーの合成 en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=MaedaMegumi en-aut-sei=Maeda en-aut-mei=Megumi kn-aut-name=前田恵 kn-aut-sei=前田 kn-aut-mei=恵 aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil=岡山大学大学院 環境生命科学研究科 END start-ver=1.4 cd-journal=joma no-vol=82 cd-vols= no-issue=7 article-no= start-page=1172 end-page=1175 dt-received= dt-revised= dt-accepted= dt-pub-year=2018 dt-pub=201804 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Novel assay system for acidic Peptide:N-glycanase (aPNGase) activity in crude plant extract en-subtitle= kn-subtitle= en-abstract= kn-abstract= Acidic peptide:N-glycanase (aPNGase) plays a pivotal role in plant glycoprotein turnover. For the construction of aPNGase-knockout or -overexpressing plants, a new method to detect the activity in crude plant extracts is required because endogenous peptidases present in the extract hamper enzyme assays using fluorescence-labeled N-glycopeptides as a substrate. In this study, we developed a new method for measuring aPNGase activity in crude extracts from plant materials en-copyright= kn-copyright= en-aut-name=UemuraRyota en-aut-sei=Uemura en-aut-mei=Ryota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OguraMikako en-aut-sei=Ogura en-aut-mei=Mikako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MatsumaruChihiro en-aut-sei=Matsumaru en-aut-mei=Chihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AkiyamaTsuyoshi en-aut-sei=Akiyama en-aut-mei=Tsuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MaedaMegumi en-aut-sei=Maeda en-aut-mei=Megumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KimuraYoshinobu en-aut-sei=Kimura en-aut-mei=Yoshinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science , Okayama University kn-affil= affil-num=2 en-affil=Faculty of Agriculture , Okayama University kn-affil= affil-num=3 en-affil=Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science , Okayama University kn-affil= affil-num=4 en-affil=Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science , Okayama University kn-affil= affil-num=5 en-affil=Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science , Okayama University kn-affil= affil-num=6 en-affil=Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science , Okayama University kn-affil= en-keyword=Acidic PNGase kn-keyword=Acidic PNGase en-keyword=FNG: free N-glycan kn-keyword=FNG: free N-glycan en-keyword=Fuc: L-fucose kn-keyword=Fuc: L-fucose en-keyword=Gal: D-galactose kn-keyword=Gal: D-galactose en-keyword=GlcNAc: N-acetyl-D-glucosamine kn-keyword=GlcNAc: N-acetyl-D-glucosamine en-keyword=HPLC: high-performance liquid chromatography kn-keyword=HPLC: high-performance liquid chromatography en-keyword=Man: D-mannose kn-keyword=Man: D-mannose en-keyword=NeuNAc2Gal2GlcNAc2Man3GlcNAc1: NeuNAcα2?6Galβ1?4GlcNAcβ1?2Manα1?6(NeuNAcα2?6Galβ1?4GlcNAcβ1?2Manα1?3)Manβ1?4GlcNAc kn-keyword=NeuNAc2Gal2GlcNAc2Man3GlcNAc1: NeuNAcα2?6Galβ1?4GlcNAcβ1?2Manα1?6(NeuNAcα2?6Galβ1?4GlcNAcβ1?2Manα1?3)Manβ1?4GlcNAc en-keyword=NeuNAc2Gal2GlcNAc2Man3GlcNAc2: NeuNAcα2?6Galβ1?4GlcNAcβ1?2Manα1?6(NeuNAcα2?6Galβ1?4GlcNAcβ1?2Manα1?3)Manβ1?4GlcNAcβ1?4GlcNAc kn-keyword=NeuNAc2Gal2GlcNAc2Man3GlcNAc2: NeuNAcα2?6Galβ1?4GlcNAcβ1?2Manα1?6(NeuNAcα2?6Galβ1?4GlcNAcβ1?2Manα1?3)Manβ1?4GlcNAcβ1?4GlcNAc en-keyword=NeuNAc: N-acetylneuraminic acid kn-keyword=NeuNAc: N-acetylneuraminic acid en-keyword=PA-: pyridylamino kn-keyword=PA-: pyridylamino en-keyword=PNGase-A: aPNGase from almond seed kn-keyword=PNGase-A: aPNGase from almond seed en-keyword=PNGase-Le: aPNGase from tomato (Solanum lycopersium L.) kn-keyword=PNGase-Le: aPNGase from tomato (Solanum lycopersium L.) en-keyword=PNGase: peptide:N-glycanase kn-keyword=PNGase: peptide:N-glycanase en-keyword=PTC: plant complex type kn-keyword=PTC: plant complex type en-keyword=RCA120: Ricinus communis agglutinin (120 kDa) kn-keyword=RCA120: Ricinus communis agglutinin (120 kDa) en-keyword=RP-HPLC: reversed-phase HPLC kn-keyword=RP-HPLC: reversed-phase HPLC en-keyword=SF-HPLC: size-fractionation HPLC kn-keyword=SF-HPLC: size-fractionation HPLC en-keyword=Xyl: D-xylose kn-keyword=Xyl: D-xylose en-keyword=affinity chromatography kn-keyword=affinity chromatography en-keyword=enzyme assay kn-keyword=enzyme assay en-keyword=free N-glycans kn-keyword=free N-glycans en-keyword=transgenic plant kn-keyword=transgenic plant END start-ver=1.4 cd-journal=joma no-vol=50 cd-vols= no-issue=1 article-no= start-page=66 end-page=74 dt-received= dt-revised= dt-accepted= dt-pub-year=2016 dt-pub=20161122 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Accelerated cell cycle progression of human regulatory T cell-like cell line caused by continuous exposure to asbestos fibers en-subtitle= kn-subtitle= en-abstract= kn-abstract= Asbestos exposure causes malignant tumors such as lung cancer and malignant mesothelioma. Based on our hypothesis in which continuous exposure to asbestos of immune cells cause reduction of antitumor immunity, the decrease of natural killer cell killing activity with reduction of NKp46 activating receptor expression, inhibition of cytotoxic T cell clonal expansion, reduced CXCR3 chemokine receptor expression and production of interferon-γ production in CD4+ T cells were reported using cell line models, freshly isolated peripheral blood immune cells from health donors as well as asbestos exposed patients such as pleural plaque and mesothelioma. In addition to these findings, regulatory T cells (Treg) showed enhanced function through cell-cell contact and increased secretion of typical soluble factors, interleukin (IL)-10 and transforming growth factor (TGF)-β, in a cell line model using the MT-2 human polyclonal T cells and its sublines exposed continuously to asbestos fibers. Since these sublines showed a remarkable reduction of FoxO1 transcription factor, which regulates various cell cycle regulators in asbestos-exposed sublines, the cell cycle progression in these sublines was examined and compared with that of the original MT-2 cells. Results showed that cyclin D1 expression was markedly enhanced, and various cyclin-dependent kinase-inhibitors were reduced with increased S phases in the sublines. Furthermore, the increase of cyclin D1 expression was regulated by FoxO1. The overall findings indicate that antitumor immunity in asbestos-exposed individuals may be reduced in Treg through changes in the function and volume of Treg. en-copyright= kn-copyright= en-aut-name=LeeSuni en-aut-sei=Lee en-aut-mei=Suni kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatsuzakiHidenori en-aut-sei=Matsuzaki en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MaedaMegumi en-aut-sei=Maeda en-aut-mei=Megumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YamamotoShoko en-aut-sei=Yamamoto en-aut-mei=Shoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=Kumagai-TakeiNaoko en-aut-sei=Kumagai-Takei en-aut-mei=Naoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HatayamaTamayo en-aut-sei=Hatayama en-aut-mei=Tamayo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IkedaMiho en-aut-sei=Ikeda en-aut-mei=Miho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YoshitomeKei en-aut-sei=Yoshitome en-aut-mei=Kei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NishimuraYasumitsu en-aut-sei=Nishimura en-aut-mei=Yasumitsu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=OtsukiTakemi en-aut-sei=Otsuki en-aut-mei=Takemi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Hygiene, Kawasaki Medical School kn-affil= affil-num=2 en-affil=Department of Hygiene, Kawasaki Medical School kn-affil= affil-num=3 en-affil=Department of Biofunctional Chemistry, Division of Bioscience, Okayama University Graduate School of Natural Science and Technology kn-affil= affil-num=4 en-affil=Department of Hygiene, Kawasaki Medical School kn-affil= affil-num=5 en-affil= kn-affil= affil-num=6 en-affil=Department of Hygiene, Kawasaki Medical School kn-affil= affil-num=7 en-affil=Department of Hygiene, Kawasaki Medical School kn-affil= affil-num=8 en-affil=Department of Hygiene, Kawasaki Medical School kn-affil= affil-num=9 en-affil=Department of Hygiene, Kawasaki Medical School kn-affil= affil-num=10 en-affil=Department of Hygiene, Kawasaki Medical School kn-affil= END start-ver=1.4 cd-journal=joma no-vol=50 cd-vols= no-issue=6 article-no= start-page=2024 end-page=2032 dt-received= dt-revised= dt-accepted= dt-pub-year=2017 dt-pub=20170509 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Induction of IL-17 production from human peripheral blood CD4+ cells by asbestos exposure en-subtitle= kn-subtitle= en-abstract= kn-abstract= We have previously reported that chronic, recurrent and low-dose exposure to asbestos fibers causes a reduction in antitumor immunity. Investigation of natural killer (NK) cells using an in vitro cell line model and comprising in vitro activation using freshly isolated NK cells co-cultured with chrysotile fibers, as well as NK cells derived from asbestos-exposed patients with pleural plaque (PP) or malignant mesothelioma (MM), revealed decreased expression of NK cell activating receptors such as NKG2D, 2B4 and NKp46. An in vitro differentiation and clonal expansion model for CD8+ cytotoxic T lymphocytes (CTLs) showed reduced cytotoxicity with decreased levels of cytotoxic molecules such as granzyme B and perforin, as well as suppressed proliferation of CTLs. Additionally, analysis of T helper cells showed that surface CXCR3, chemokine receptor, and the productive potential of interferon (IFN)γ were reduced following asbestos exposure in an in vitro cell line model and in peripheral CD4+ cells of asbestos-exposed patients. Moreover, experiments revealed that asbestos exposure enhanced regulatory T cell (Treg) function. This study also focused on CXCR3 expression and the Th-17 cell fraction. Following activation with T-cell receptor and co-culture with various concentrations of chrysotile fibers using freshly isolated CD4+ surface CXCR3 positive and negative fractions, the intracellular expression of CXCR3, IFNγ and IL-17 remained unchanged when co-cultured with chrysotile. However, subsequent re-stimulation with phorbol 12-myristate 13-acetate (PMA) and ionomycin resulted in enhanced IL-17 production and expression, particularly in CD4+ surface CXCR3 positive cells. These results indicated that the balance and polarization between Treg and Th-17 fractions play an important role with respect to the immunological effects of asbestos and the associated reduction in antitumor immunity. en-copyright= kn-copyright= en-aut-name=MaedaMegumi en-aut-sei=Maeda en-aut-mei=Megumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ChenYing en-aut-sei=Chen en-aut-mei=Ying kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=LeeSuni en-aut-sei=Lee en-aut-mei=Suni kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=Kumagai-TakeiNaoko en-aut-sei=Kumagai-Takei en-aut-mei=Naoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YoshitomeKei en-aut-sei=Yoshitome en-aut-mei=Kei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MatsuzakiHidenori en-aut-sei=Matsuzaki en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YamamotoShoko en-aut-sei=Yamamoto en-aut-mei=Shoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HatayamaTamayo en-aut-sei=Hatayama en-aut-mei=Tamayo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=IkedaMiho en-aut-sei=Ikeda en-aut-mei=Miho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=NishimuraYasumitsu en-aut-sei=Nishimura en-aut-mei=Yasumitsu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=OtsukiTakemi en-aut-sei=Otsuki en-aut-mei=Takemi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Department of Biofunctional Chemistry, Division of Bioscience, Okayama University Graduate School of Natural Science and Technology kn-affil= affil-num=2 en-affil= Department of Hygiene, Kawasaki Medical School kn-affil= affil-num=3 en-affil= Department of Hygiene, Kawasaki Medical School kn-affil= affil-num=4 en-affil= Department of Hygiene, Kawasaki Medical School kn-affil= affil-num=5 en-affil= Department of Hygiene, Kawasaki Medical School kn-affil= affil-num=6 en-affil= Department of Hygiene, Kawasaki Medical School kn-affil= affil-num=7 en-affil= Department of Hygiene, Kawasaki Medical School kn-affil= affil-num=8 en-affil= Department of Hygiene, Kawasaki Medical School kn-affil= affil-num=9 en-affil= Department of Hygiene, Kawasaki Medical School kn-affil= affil-num=10 en-affil= Department of Hygiene, Kawasaki Medical School kn-affil= affil-num=11 en-affil= Department of Hygiene, Kawasaki Medical School kn-affil= END start-ver=1.4 cd-journal=joma no-vol=106 cd-vols= no-issue= article-no= start-page=5 end-page=12 dt-received= dt-revised= dt-accepted= dt-pub-year=2017 dt-pub=20170201 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Ginkgo biloba α-fucosidase with activity towards plant complex type N-glycans containing the Lewis a epitope: Purification and characterization en-subtitle= kn-subtitle= en-abstract= 銀杏種子から高分子量 (SDS-PAGE で120 kDa) を有し,α-フコース含有オリゴ糖に活性を示すα-フコシダーゼ(α-fucosidase Gb)を均一に精製した.ルイス a エピトープ含有 N-グリカンを基質とした場合,α-fucosidase Gb の至適 pH は 5.5 付近であることから,本酵素は液胞のような酸性環境で機能していることが示唆された.N?末端アミノ酸配列が化学修飾のため同定できなかったため,本酵素が GH29 ファミリーに属するかどうかは不明である.α-Fucosidase Gb は,Lacto-N-fucopentaose IIIの α1,3-フコース残基やルイス a エピトープ含有の植物複合型N-グリカンのα1,4-フコース残基を加水分解することから,α-フコース含有オリゴ糖やN 型糖タンパク質の分解プロセスに関与することが示唆された. kn-abstract= We have identified, and purified to homogeneity, a high molecular weight Ginkgo biloba α-fucosidase (α-fucosidase Gb, 120 kDa estimated by SDS?PAGE) with activity against α-fucosylated oligosaccharides. When a Lewis a epitope-containing N-glycan was used as a substrate, α-fucosidase Gb showed optimum activity at approximately pH 5.5, suggesting that it functions in acidic environments such as the vacuole. It remains uncertain, however, whether this Ginkgo α-fucosidase belongs to the GH29 family, since its N-terminal sequence could not be determined, probably due to a chemical modification. α-Fucosidase Gb showed substantial activity towards the α1,3-fucosyl linkage in Lacto-N-fucopentaose III and an α1,4-fucosyl linkage in the Lewis a epitope found in plant complex type N-glycans, indicating an involvement in the degradation process of α-fucosylated oligosaccharides or N-glycoproteins. en-copyright= kn-copyright= en-aut-name=ItanoSatsuki en-aut-sei=Itano en-aut-mei=Satsuki kn-aut-name=板野紗月 kn-aut-sei=板野 kn-aut-mei=紗月 aut-affil-num=1 ORCID= en-aut-name=MaedaMegumi en-aut-sei=Maeda en-aut-mei=Megumi kn-aut-name=前田恵 kn-aut-sei=前田 kn-aut-mei=恵 aut-affil-num=2 ORCID= en-aut-name=Md. Ziaur Rahman en-aut-sei=Md. Ziaur Rahman en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KimuraYoshinobu en-aut-sei=Kimura en-aut-mei=Yoshinobu kn-aut-name=木村吉伸 kn-aut-sei=木村 kn-aut-mei=吉伸 aut-affil-num=4 ORCID= affil-num=1 en-affil=Graduate School of Environmental and life Science, Okayama University kn-affil=岡山大学大学院環境生命科学研究科 affil-num=2 en-affil=Graduate School of Environmental and life Science, Okayama University kn-affil=岡山大学大学院環境生命科学研究科 affil-num=3 en-affil=Institute of Food and Radiation Biology, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission kn-affil= affil-num=4 en-affil=Graduate School of Environmental and life Science, Okayama University kn-affil=岡山大学大学院環境生命科学研究科 en-keyword=α-fucosidase kn-keyword=α-fucosidase en-keyword=plant N-glycan kn-keyword=plant N-glycan en-keyword=N-glycan degradation kn-keyword=N-glycan degradation en-keyword=Ginkgo biloba kn-keyword=Ginkgo biloba END start-ver=1.4 cd-journal=joma no-vol=103 cd-vols= no-issue= article-no= start-page=1 end-page=4 dt-received= dt-revised= dt-accepted= dt-pub-year=2014 dt-pub=20140201 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=大豆発芽時期におけるグリシニン分解酵素の活性変動 kn-title=Changes in Glycinin?Digesting Protease Activity During Soybean Germination. en-subtitle= kn-subtitle= en-abstract= 大豆発芽期におけるグリシニン分解酵素 (98 kDa SBP) の活性変動を解析した.大豆種子を4時間水で膨潤後, 25 ℃ 暗黒下で発芽させた.経時的にサンプリングを行い,2M NaCl を含むトリス緩衝液 (? 7.0) により粗酵素を抽出 後,グリシニン由来のトリプシン分解ペプチドを基質としてグリシニン分解酵素の活性変動を逆相 HPLC により追 跡した.その結果,種子膨潤後4日間比活性はほぼ一定の値を保ち,以後徐々に低下することが分かった.次いで, 粗酵素溶液からイオン交換 HPLC により98 kDa SBP を部分精製するとともに,発芽期における 98 kDa SBP の消長 を解析したところ,98 kDa SBP は乾燥種子及び各発芽段階の種子中全てに認められ,かつグリシン分解活性もグリ シニン由来のトリプシン分解ペプチド基質に対する活性と同様に認められた.以上の結果から,98 kDa SBP は種子 発芽に伴い誘導されるプロテアーゼではなく,種子貯蔵型のプロテアーゼであることが明らかになった. kn-abstract= Changes in glycinin-digesting protease activity during soybean germination have been investigated. The glycinin-digesting protease activities of imbibed or germinated soybean seed were assayed by RP?HPLC using a tryptic peptide from CM?glycinin or by SDS?PAGE using CM?glycinin as the endogenous substrate. Proteolytic activities of the germinated soybean seeds were found through the whole period of germination, the activities were maintained significantly unchanged during germination for 4 days, and then those specific activities declined slowly. AE?HPLC analysis of the glycinin-digesting protease in the imbibed or germinated soybean seeds showed unchanged peaks corresponding to glycinin- digesting activity, suggesting that the glycinin-digesting protease was not induced during germination but had already been synthesized during seed maturation. en-copyright= kn-copyright= en-aut-name=Md. Akhtaruzzaman en-aut-sei=Md. Akhtaruzzaman en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MaedaMegumi en-aut-sei=Maeda en-aut-mei=Megumi kn-aut-name=前田恵 kn-aut-sei=前田 kn-aut-mei=恵 aut-affil-num=2 ORCID= en-aut-name=KitagawaKeiko en-aut-sei=Kitagawa en-aut-mei=Keiko kn-aut-name=北川恵子 kn-aut-sei=北川 kn-aut-mei=恵子 aut-affil-num=3 ORCID= en-aut-name=TakagiShigeaki en-aut-sei=Takagi en-aut-mei=Shigeaki kn-aut-name=高木茂明 kn-aut-sei=高木 kn-aut-mei=茂明 aut-affil-num=4 ORCID= en-aut-name=KimuraYoshinobu en-aut-sei=Kimura en-aut-mei=Yoshinobu kn-aut-name=木村吉伸 kn-aut-sei=木村 kn-aut-mei=吉伸 aut-affil-num=5 ORCID= affil-num=1 en-affil= kn-affil=岡山大学 affil-num=2 en-affil= kn-affil=岡山大学 affil-num=3 en-affil= kn-affil=岡山大学 affil-num=4 en-affil= kn-affil=岡山大学 affil-num=5 en-affil= kn-affil=岡山大学 en-keyword=Plant protease kn-keyword=Plant protease en-keyword=glycinin kn-keyword=glycinin en-keyword=germination kn-keyword=germination en-keyword=Glycine max kn-keyword=Glycine max END