start-ver=1.4
cd-journal=joma
no-vol=152
cd-vols=
no-issue=22
article-no=
start-page=dev204763
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251115
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=ROS produced by Dual oxidase regulate cell proliferation and haemocyte migration during leg regeneration in the cricket
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Many animals regenerate lost body parts through several signalling pathways; however, the triggers that initiate regeneration remain unclear. In the present study, we focused on the role of reactive oxygen species (ROS) produced by the NADPH oxidase Dual oxidase (Duox) during cricket leg regeneration. The results showed that ROS levels were upregulated during leg regeneration and decreased by DuoxRNAi. In DuoxRNAi nymphs, wound closure and scab formation were incomplete 2 days after amputation, and hypertrophy occurred in the distal region of the regenerating legs at 5 days after amputation. In addition, the hypertrophic phenotype was induced by DuoxARNAi and NADPH oxidase inhibitor treatment. During hypertrophy, haemocytes, including plasmatocytes, oenocytoids and granulocytes, accumulated. Proliferation of haemocytes in regenerating legs was not increased by DuoxRNAi; however, haemocyte accumulation was regulated by the Spatzle (Spz) family molecules, which are Toll receptor ligands. As the exoskeleton of DuoxRNAi nymphs was thinner than that of the control, excessive haemocyte accumulation can cause hypertrophy in DuoxRNAi nymphs. Thus, Duox-derived ROS are involved in wound healing and haemocyte accumulation through the Spz/Toll signalling pathway during leg regeneration in crickets.
en-copyright=
kn-copyright=
en-aut-name=Okumura-HironoMisa
en-aut-sei=Okumura-Hirono
en-aut-mei=Misa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=BandoTetsuya
en-aut-sei=Bando
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HamadaYoshimasa
en-aut-sei=Hamada
en-aut-mei=Yoshimasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ArakiMotoo
en-aut-sei=Araki
en-aut-mei=Motoo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OhuchiHideyo
en-aut-sei=Ohuchi
en-aut-mei=Hideyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Regeneration
kn-keyword=Regeneration
en-keyword=Reactive oxygen species (ROS)
kn-keyword=Reactive oxygen species (ROS)
en-keyword=NADPH oxidase (Nox)
kn-keyword=NADPH oxidase (Nox)
en-keyword=Dual oxidase (Duox)
kn-keyword=Dual oxidase (Duox)
en-keyword=Inflammation
kn-keyword=Inflammation
en-keyword=Gryllus bimaculatus
kn-keyword=Gryllus bimaculatus
END
start-ver=1.4
cd-journal=joma
no-vol=136
cd-vols=
no-issue=10
article-no=
start-page=lxaf217
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250828
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Gut dysbiosis allows foodborne salmonella colonization in edible crickets: a probiotic strategy for enhanced food safety
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Aims: Edible insects, including crickets, represent a promising protein source, yet concerns over foodborne pathogens limit consumer acceptance. This study investigated whether gut microbiota modulates colonization by Salmonella enterica subsp. enterica serovar Enteritidis (SE) in the two-spotted cricket (Gryllus bimaculatus).
Methods and Results: Under standard conditions, SE was undetectable in crickets despite prolonged exposure; however, antibiotic-induced dysbiosis enabled stable SE colonization. Long-read 16S rRNA sequencing revealed significant microbiota shifts, notably a reduction in Lactococcus garvieae. In vitro assays showed strong inhibitory effects of L. garvieae against SE, and supplementation of dysbiotic crickets with L. garvieae reduced SE colonization by ∼1000-fold.
Conclusions: The native cricket gut microbiota, especially L. garvieae, plays a protective role against SE colonization. Enhancing beneficial gut bacteria could mitigate pathogen risks and promote edible insects as a sustainable protein.
en-copyright=
kn-copyright=
en-aut-name=TsujiShuma
en-aut-sei=Tsuji
en-aut-mei=Shuma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MatsushitaOsamu
en-aut-sei=Matsushita
en-aut-mei=Osamu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=UchiyamaJumpei
en-aut-sei=Uchiyama
en-aut-mei=Jumpei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YokotaKenji
en-aut-sei=Yokota
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=BandoTetsuya
en-aut-sei=Bando
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OhuchiHideyo
en-aut-sei=Ohuchi
en-aut-mei=Hideyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=GotohKazuyoshi
en-aut-sei=Gotoh
en-aut-mei=Kazuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Medical Laboratory Science, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=2
en-affil=Department of Bacteriology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Bacteriology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Medical Laboratory Science, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=5
en-affil=Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Medical Laboratory Science, Okayama University Graduate School of Health Sciences
kn-affil=
en-keyword=food safety
kn-keyword=food safety
en-keyword=edible crickets
kn-keyword=edible crickets
en-keyword=Salmonella
kn-keyword=Salmonella
en-keyword=Lactococcus
kn-keyword=Lactococcus
en-keyword=probiotics
kn-keyword=probiotics
en-keyword=microbiome
kn-keyword=microbiome
END
start-ver=1.4
cd-journal=joma
no-vol=10
cd-vols=
no-issue=4
article-no=
start-page=45
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20221029
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Involvement of a Basic Helix-Loop-Helix Gene BHLHE40 in Specification of Chicken Retinal Pigment Epithelium
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The first event of differentiation and morphogenesis in the optic vesicle (OV) is specification of the neural retina (NR) and retinal pigment epithelium (RPE), separating the inner and outer layers of the optic cup, respectively. Here, we focus on a basic helix-loop-helix gene, BHLHE40, which has been shown to be expressed by the developing RPE in mice and zebrafish. Firstly, we examined the expression pattern of BHLHE40 in the developing chicken eye primordia by in situ hybridization. Secondly, BHLHE40 overexpression was performed with in ovo electroporation and its effects on optic cup morphology and expression of NR and RPE marker genes were examined. Thirdly, we examined the expression pattern of BHLHE40 in LHX1-overexpressed optic cup. BHLHE40 expression emerged in a subset of cells of the OV at Hamburger and Hamilton stage 14 and became confined to the outer layer of the OV and the ciliary marginal zone of the retina by stage 17. BHLHE40 overexpression in the prospective NR resulted in ectopic induction of OTX2 and repression of VSX2. Conversely, BHLHE40 was repressed in the second NR after LHX1 overexpression. These results suggest that emergence of BHLHE40 expression in the OV is involved in initial RPE specification and that BHLHE40 plays a role in separation of the early OV domains by maintaining OTX2 expression and antagonizing an NR developmental program.
en-copyright=
kn-copyright=
en-aut-name=KinuhataToshiki
en-aut-sei=Kinuhata
en-aut-mei=Toshiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SatoKeita
en-aut-sei=Sato
en-aut-mei=Keita
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=BandoTetsuya
en-aut-sei=Bando
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MitoTaro
en-aut-sei=Mito
en-aut-mei=Taro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MiyaishiSatoru
en-aut-sei=Miyaishi
en-aut-mei=Satoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NohnoTsutomu
en-aut-sei=Nohno
en-aut-mei=Tsutomu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OhuchiHideyo
en-aut-sei=Ohuchi
en-aut-mei=Hideyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Cytology and Histology, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Cytology and Histology, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Bio-Innovation Research Center, Tokushima University
kn-affil=
affil-num=5
en-affil=Department of Legal Medicine, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Cytology and Histology, Okayama University Medical School
kn-affil=
affil-num=7
en-affil=Department of Cytology and Histology, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=basic helix-loop-helix e40
kn-keyword=basic helix-loop-helix e40
en-keyword=BHLHE40
kn-keyword=BHLHE40
en-keyword=LIM homeobox 1
kn-keyword=LIM homeobox 1
en-keyword=LHX1
kn-keyword=LHX1
en-keyword=chicken
kn-keyword=chicken
en-keyword=optic vesicle
kn-keyword=optic vesicle
en-keyword=retinal pigment epithelium
kn-keyword=retinal pigment epithelium
en-keyword=RPE
kn-keyword=RPE
en-keyword=neural retina
kn-keyword=neural retina
END
start-ver=1.4
cd-journal=joma
no-vol=149
cd-vols=
no-issue=8
article-no=
start-page=dev199916
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=20211109
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Toll signalling promotes blastema cell proliferation during cricket leg regeneration via insect macrophages
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Hemimetabolous insects, such as the two-spotted cricket Gryllus bimaculatus, can recover lost tissues, in contrast to the limited regenerative abilities of human tissues. Following cricket leg amputation, the wound surface is covered by the wound epidermis, and plasmatocytes, which are insect macrophages, accumulate in the wound region. Here, we studied the function of Toll-related molecules identified by comparative RNA sequencing during leg regeneration. Of the 11 Toll genes in the Gryllus genome, expression of Toll2-1, Toll2-2 and Toll2-5 was upregulated during regeneration. RNA interference (RNAi) of Toll, Toll2-1, Toll2-2, Toll2-3 or Toll2-4 produced regeneration defects in more than 50% of crickets. RNAi of Toll2-2 led to a decrease in the ratio of S- and M-phase cells, reduced expression of JAK/STAT signalling genes, and reduced accumulation of plasmatocytes in the blastema. Depletion of plasmatocytes in crickets using clodronate also produced regeneration defects, as well as fewer proliferating cells in the regenerating legs. Plasmatocyte depletion also downregulated the expression of Toll and JAK/STAT signalling genes in the regenerating legs. These results suggest that Spz-Toll-related signalling in plasmatocytes promotes leg regeneration through blastema cell proliferation by regulating the Upd-JAK/STAT signalling pathway.
en-copyright=
kn-copyright=
en-aut-name=BandoTetsuya
en-aut-sei=Bando
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OkumuraMisa
en-aut-sei=Okumura
en-aut-mei=Misa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=BandoYuki
en-aut-sei=Bando
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HagiwaraMarou
en-aut-sei=Hagiwara
en-aut-mei=Marou
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HamadaYoshimasa
en-aut-sei=Hamada
en-aut-mei=Yoshimasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=IshimaruYoshiyasu
en-aut-sei=Ishimaru
en-aut-mei=Yoshiyasu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MitoTaro
en-aut-sei=Mito
en-aut-mei=Taro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KawaguchiEri
en-aut-sei=Kawaguchi
en-aut-mei=Eri
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=InoueTakeshi
en-aut-sei=Inoue
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=AgataKiyokazu
en-aut-sei=Agata
en-aut-mei=Kiyokazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=NojiSumihare
en-aut-sei=Noji
en-aut-mei=Sumihare
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=OhuchiHideyo
en-aut-sei=Ohuchi
en-aut-mei=Hideyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Faculty of Medicine, Okayama University Medical School
kn-affil=
affil-num=4
en-affil=Faculty of Medicine, Okayama University Medical School
kn-affil=
affil-num=5
en-affil=Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University
kn-affil=
affil-num=7
en-affil=Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University
kn-affil=
affil-num=8
en-affil=Division of Biological Science, Graduate School of Science, Kyoto University
kn-affil=
affil-num=9
en-affil=Division of Biological Science, Graduate School of Science, Kyoto University
kn-affil=
affil-num=10
en-affil=Division of Biological Science, Graduate School of Science, Kyoto University
kn-affil=
affil-num=11
en-affil=Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University
kn-affil=
affil-num=12
en-affil=Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Regeneration
kn-keyword=Regeneration
en-keyword=Toll-related signalling
kn-keyword=Toll-related signalling
en-keyword=JAK/STAT signalling
kn-keyword=JAK/STAT signalling
en-keyword=Macrophages
kn-keyword=Macrophages
en-keyword=Blastema
kn-keyword=Blastema
en-keyword=Gryllus bimaculatus
kn-keyword=Gryllus bimaculatus
END
start-ver=1.4
cd-journal=joma
no-vol=6
cd-vols=
no-issue=1
article-no=
start-page=12
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2020
dt-pub=20201111
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The role of clockwork orange in the circadian clock of the cricket Gryllus bimaculatus
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The circadian clock generates rhythms of approximately 24 h through periodic expression of the clock genes. In insects, the major clock genes period (per) and timeless (tim) are rhythmically expressed upon their transactivation by CLOCK/CYCLE, with peak levels in the early night. In Drosophila, clockwork orange (cwo) is known to inhibit the transcription of per and tim during the daytime to enhance the amplitude of the rhythm, but its function in other insects is largely unknown. In this study, we investigated the role of cwo in the clock mechanism of the cricket Gryllus bimaculatus. The results of quantitative RT-PCR showed that under a light/dark (LD) cycle, cwo is rhythmically expressed in the optic lobe (lamina-medulla complex) and peaks during the night. When cwo was knocked down via RNA interference (RNAi), some crickets lost their locomotor rhythm, while others maintained a rhythm but exhibited a longer free-running period under constant darkness (DD). In cwo(RNAi) crickets, all clock genes except for cryptochrome 2 (cry2) showed arrhythmic expression under DD; under LD, some of the clock genes showed higher mRNA levels, and tim showed rhythmic expression with a delayed phase. Based on these results, we propose that cwo plays an important role in the cricket circadian clock.
en-copyright=
kn-copyright=
en-aut-name=TomiyamaYasuaki
en-aut-sei=Tomiyama
en-aut-mei=Yasuaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ShinoharaTsugumichi
en-aut-sei=Shinohara
en-aut-mei=Tsugumichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MatsukaMirai
en-aut-sei=Matsuka
en-aut-mei=Mirai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=BandoTetsuya
en-aut-sei=Bando
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MitoTaro
en-aut-sei=Mito
en-aut-mei=Taro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TomiokaKenji
en-aut-sei=Tomioka
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Technology, Industrial and Social Sciences, Tokushima University
kn-affil=
affil-num=6
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Circadian clock
kn-keyword=Circadian clock
en-keyword=Clockwork orange
kn-keyword=Clockwork orange
en-keyword=Clock gene
kn-keyword=Clock gene
en-keyword=Cricket
kn-keyword=Cricket
en-keyword=cry2
kn-keyword=cry2
en-keyword=Molecular oscillation
kn-keyword=Molecular oscillation
en-keyword=Locomotor rhythm
kn-keyword=Locomotor rhythm
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=10
article-no=
start-page=e0240333
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2020
dt-pub=20201015
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Fgf10-CRISPR mosaic mutants demonstrate the gene dose-related loss of the accessory lobe and decrease in the number of alveolar type 2 epithelial cells in mouse lung
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=CRISPR/Cas9-mediated gene editing often generates founder generation (F0) mice that exhibit somatic mosaicism in the targeted gene(s). It has been known thatFibroblast growth factor 10(Fgf10)-null mice exhibit limbless and lungless phenotypes, while intermediate limb phenotypes (variable defective limbs) are observed in theFgf10-CRISPR F0 mice. However, how the lung phenotype in theFgf10-mosaic mutants is related to the limb phenotype and genotype has not been investigated. In this study, we examined variable lung phenotypes in theFgf10-targeted F0 mice to determine if the lung phenotype was correlated with percentage of functionalFgf10genotypes. Firstly, according to a previous report,Fgf10-CRISPR F0 embryos on embryonic day 16.5 (E16.5) were classified into three types: type I, no limb; type II, limb defect; and type III, normal limbs. Cartilage and bone staining showed that limb truncations were observed in the girdle, (type I), stylopodial, or zeugopodial region (type II). Deep sequencing of theFgf10-mutant genomes revealed that the mean proportion of codons that encode putative functional FGF10 was 8.3 +/- 6.2% in type I, 25.3 +/- 2.7% in type II, and 54.3 +/- 9.5% in type III (mean +/- standard error of the mean) mutants at E16.5. Histological studies showed that almost all lung lobes were absent in type I embryos. The accessory lung lobe was often absent in type II embryos with other lobes dysplastic. All lung lobes formed in type III embryos. The number of terminal tubules was significantly lower in type I and II embryos, but unchanged in type III embryos. To identify alveolar type 2 epithelial (AECII) cells, known to be reduced in theFgf10-heterozygous mutant, immunostaining using anti-surfactant protein C (SPC) antibody was performed: In the E18.5 lungs, the number of AECII was correlated to the percentage of functionalFgf10genotypes. These data suggest theFgf10gene dose-related loss of the accessory lobe and decrease in the number of alveolar type 2 epithelial cells in mouse lung. Since dysfunction of AECII cells has been implicated in the pathogenesis of parenchymal lung diseases, theFgf10-CRISPR F0 mouse would present an ideal experimental system to explore it.
en-copyright=
kn-copyright=
en-aut-name=HabutaMunenori
en-aut-sei=Habuta
en-aut-mei=Munenori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YasueAkihiro
en-aut-sei=Yasue
en-aut-mei=Akihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SuzukiKen-Ichi T.
en-aut-sei=Suzuki
en-aut-mei=Ken-Ichi T.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=FujitaHirofumi
en-aut-sei=Fujita
en-aut-mei=Hirofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SatoKeita
en-aut-sei=Sato
en-aut-mei=Keita
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KonoHitomi
en-aut-sei=Kono
en-aut-mei=Hitomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TakayamaAyuko
en-aut-sei=Takayama
en-aut-mei=Ayuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=BandoTetsuya
en-aut-sei=Bando
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MiyaishiSatoru
en-aut-sei=Miyaishi
en-aut-mei=Satoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=OyadomariSeiichi
en-aut-sei=Oyadomari
en-aut-mei=Seiichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=TanakaEiji
en-aut-sei=Tanaka
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=OhuchiHideyo
en-aut-sei=Ohuchi
en-aut-mei=Hideyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School
kn-affil=
affil-num=3
en-affil=Department of Mathematical and Life Sciences, Hiroshima University
kn-affil=
affil-num=4
en-affil=Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Center for the Development of New Model Organisms, National Institute for Basic Biology
kn-affil=
affil-num=8
en-affil=Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Legal Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Division of Molecular Biology, Institute of Advanced Medical Sciences, Tokushima University
kn-affil=
affil-num=11
en-affil=Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School
kn-affil=
affil-num=12
en-affil=Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=74
cd-vols=
no-issue=3
article-no=
start-page=199
end-page=208
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2020
dt-pub=202006
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Dkk3/REIC, an N-glycosylated Protein, Is a Physiological Endoplasmic Reticulum Stress Inducer in the Mouse Adrenal Gland
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Dickkopf 3 (Dkk3) is a secreted protein belonging to the Dkk family and encoded by the orthologous gene of REIC. Dkk3/REIC is expressed by mouse and human adrenal glands, but the understanding of its roles in this organ is still limited. To determine the functions of Dkk3 in the mouse adrenal gland, we first identified that the mouse Dkk3 protein is N-glycosylated in the adrenal gland as well as in the brain. We performed proteome analysis on adrenal glands from Dkk3-null mice, in which exons 5 and 6 of the Dkk3 gene are deleted. Twodimensional polyacrylamide gel electrophoresis of adrenal proteins from wild-type and Dkk3-null mice revealed 5 protein spots whose intensities were altered between the 2 genotypes. Mass spectrometry analysis of these spots identified binding immunoglobulin protein (BiP), an endoplasmic reticulum (ER) chaperone. To determine whether mouse Dkk3 is involved in the unfolded protein response (UPR), we carried out a reporter assay using ER-stress responsive elements. Forced expression of Dkk3 resulted in the induction of distinct levels of reporter expression, showing the UPR initiated by the ER membrane proteins of activating transcription factor 6 (ATF6) and inositol-requring enzyme 1 (IRE1). Thus, it is possible that Dkk3 is a physiological ER stressor in the mouse adrenal gland.
en-copyright=
kn-copyright=
en-aut-name=FujitaHirofumi
en-aut-sei=Fujita
en-aut-mei=Hirofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=BandoTetsuya
en-aut-sei=Bando
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OyadomariSeiichi
en-aut-sei=Oyadomari
en-aut-mei=Seiichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OchiaiKazuhiko
en-aut-sei=Ochiai
en-aut-mei=Kazuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=WatanabeMasami
en-aut-sei=Watanabe
en-aut-mei=Masami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KumonHiromi
en-aut-sei=Kumon
en-aut-mei=Hiromi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OhuchiHideyo
en-aut-sei=Ohuchi
en-aut-mei=Hideyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Division of Molecular Biology, Institute for Genome Research, University of Tokushima
kn-affil=
affil-num=4
en-affil=Department of Basic Science, School of Veterinary Nursing and Technology, Faculty of Veterinary Science, Nippon Veterinary and Life Science University
kn-affil=
affil-num=5
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Innovation Center Okayama for Nanobio-Targeted Therapy, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Dkk3 knockout mouse
kn-keyword=Dkk3 knockout mouse
en-keyword=adrenal gland
kn-keyword=adrenal gland
en-keyword=glucose-regulated protein 78
kn-keyword=glucose-regulated protein 78
en-keyword=proteome
kn-keyword=proteome
en-keyword=endoplasmic reticulum stress
kn-keyword=endoplasmic reticulum stress
END
start-ver=1.4
cd-journal=joma
no-vol=142
cd-vols=
no-issue=17
article-no=
start-page=2916
end-page=2927
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2015
dt-pub=201509
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Leg regeneration is epigenetically regulated by histone H3K27 methylation in the cricket Gryllus bimaculatus
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Hemimetabolous insects such as the cricket Gryllus bimaculatus regenerate lost tissue parts using blastemal cells, a population of dedifferentiated proliferating cells. The expression of several factors that control epigenetic modification is upregulated in the blastema compared with differentiated tissue, suggesting that epigenetic changes in gene expression might control the differentiation status of blastema cells during regeneration. To clarify the molecular basis of epigenetic regulation during regeneration, we focused on the function of the Gryllus Enhancer of zeste [Gb'E(z)] and Ubiquitously transcribed tetratricopeptide repeat gene on the X chromosome (Gb'Utx) homologues, which regulate methylation and demethylation of histone H3 lysine 27 (H3K27), respectively. Methylated histone H3K27 in the regenerating leg was diminished by Gb'E(z)RNAi and was increased by Gb'UtxRNAi. Regenerated Gb'E(z)RNAi cricket legs exhibited extra leg segment formation between the tibia and tarsus, and regenerated Gb'UtxRNAi cricket legs showed leg joint formation defects in the tarsus. In the Gb'E(z)RNAi regenerating leg, the Gb'dac expression domain expanded in the tarsus. By contrast, in the Gb'UtxRNAi regenerating leg, Gb'Egfr expression in the middle of the tarsus was diminished. These results suggest that regulation of the histone H3K27 methylation state is involved in the repatterning process during leg regeneration among cricket species via the epigenetic regulation of leg patterning gene expression.
en-copyright=
kn-copyright=
en-aut-name=HamadaYoshimasa
en-aut-sei=Hamada
en-aut-mei=Yoshimasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=BandoTetsuya
en-aut-sei=Bando
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NakamuraTaro
en-aut-sei=Nakamura
en-aut-mei=Taro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=IshimaruYoshiyasu
en-aut-sei=Ishimaru
en-aut-mei=Yoshiyasu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MitoTaro
en-aut-sei=Mito
en-aut-mei=Taro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NojiSumihare
en-aut-sei=Noji
en-aut-mei=Sumihare
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TomiokaKenji
en-aut-sei=Tomioka
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OhuchiHideyo
en-aut-sei=Ohuchi
en-aut-mei=Hideyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=
kn-affil=Graduate School of Natural Science and Technology, Okayama University
affil-num=2
en-affil=
kn-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
affil-num=3
en-affil=
kn-affil=Department of Life Systems, Institute of Technology and Science, The University of Tokushima Graduate School
affil-num=4
en-affil=
kn-affil=Department of Life Systems, Institute of Technology and Science, The University of Tokushima Graduate School
affil-num=5
en-affil=
kn-affil=Department of Life Systems, Institute of Technology and Science, The University of Tokushima Graduate School
affil-num=6
en-affil=
kn-affil=Department of Life Systems, Institute of Technology and Science, The University of Tokushima Graduate School
affil-num=7
en-affil=
kn-affil=Graduate School of Natural Science and Technology, Okayama University
affil-num=8
en-affil=
kn-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
en-keyword=Regeneration
kn-keyword=Regeneration
en-keyword=Epigenetics
kn-keyword=Epigenetics
en-keyword=Histone H3K27
kn-keyword=Histone H3K27
en-keyword=Gryllus bimaculatus
kn-keyword=Gryllus bimaculatus
en-keyword=Polycomb
kn-keyword=Polycomb
END
start-ver=1.4
cd-journal=joma
no-vol=16
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2015
dt-pub=201510
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Epigenetics research traces how crickets restore lost legs
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=BandoTetsuya
en-aut-sei=Bando
en-aut-mei=Tetsuya
kn-aut-name=板東哲哉
kn-aut-sei=板東
kn-aut-mei=哲哉
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=Department of Cytology and Histology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
END