start-ver=1.4 cd-journal=joma no-vol=19 cd-vols= no-issue=5 article-no= start-page=e0300644 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240517 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=PAI-1 mediates acquired resistance to MET-targeted therapy in non-small cell lung cancer en-subtitle= kn-subtitle= en-abstract= kn-abstract=Mechanisms underlying primary and acquired resistance to MET tyrosine kinase inhibitors (TKIs) in managing non-small cell lung cancer remain unclear. In this study, we investigated the possible mechanisms acquired for crizotinib in MET-amplified lung carcinoma cell lines. Two MET-amplified lung cancer cell lines, EBC-1 and H1993, were established for acquired resistance to MET-TKI crizotinib and were functionally elucidated. Genomic and transcriptomic data were used to assess the factors contributing to the resistance mechanism, and the alterations hypothesized to confer resistance were validated. Multiple mechanisms underlie acquired resistance to crizotinib in MET-amplified lung cancer cell lines. In EBC-1-derived resistant cells, the overexpression of SERPINE1, the gene encoding plasminogen activator inhibitor-1 (PAI-1), mediated the drug resistance mechanism. Crizotinib resistance was addressed by combination therapy with a PAI-1 inhibitor and PAI-1 knockdown. Another mechanism of resistance in different subline cells of EBC-1 was evaluated as epithelial-to-mesenchymal transition with the upregulation of antiapoptotic proteins. In H1993-derived resistant cells, MEK inhibitors could be a potential therapeutic strategy for overcoming resistance with downstream mitogen-activated protein kinase pathway activation. In this study, we revealed the different mechanisms of acquired resistance to the MET inhibitor crizotinib with potential therapeutic application in patients with MET-amplified lung carcinoma. en-copyright= kn-copyright= en-aut-name=ThuYin Min en-aut-sei=Thu en-aut-mei=Yin Min kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SuzawaKen en-aut-sei=Suzawa en-aut-mei=Ken kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TomidaShuta en-aut-sei=Tomida en-aut-mei=Shuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OchiKosuke en-aut-sei=Ochi en-aut-mei=Kosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TsudakaShimpei en-aut-sei=Tsudaka en-aut-mei=Shimpei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TakatsuFumiaki en-aut-sei=Takatsu en-aut-mei=Fumiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=DateKeiichi en-aut-sei=Date en-aut-mei=Keiichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MatsudaNaoki en-aut-sei=Matsuda en-aut-mei=Naoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=IwataKazuma en-aut-sei=Iwata en-aut-mei=Kazuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=NakataKentaro en-aut-sei=Nakata en-aut-mei=Kentaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=ShienKazuhiko en-aut-sei=Shien en-aut-mei=Kazuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=YamamotoHiromasa en-aut-sei=Yamamoto en-aut-mei=Hiromasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=OkazakiMikio en-aut-sei=Okazaki en-aut-mei=Mikio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=SugimotoSeiichiro en-aut-sei=Sugimoto en-aut-mei=Seiichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=ToyookaShinichi en-aut-sei=Toyooka en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= affil-num=1 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Center for Comprehensive Genomic Medicine, Okayama University Hospital kn-affil= affil-num=4 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Surgery, Division of Cardiovascular and Thoracic Surgery, Duke University School of Medicine kn-affil= affil-num=11 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=13 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=14 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=15 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= END start-ver=1.4 cd-journal=joma no-vol=73 cd-vols= no-issue=2 article-no= start-page=323 end-page=331 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202404 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Topical application of activator protein-1 inhibitor T-5224 suppresses inflammation and improves skin barrier function in a murine atopic dermatitis-like dermatitis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Selective activator protein (AP)-1 inhibitors are potentially promising therapeutic agents for atopic dermatitis (AD) because AP-1 is an important regulator of skin inflammation. However, few studies have investigated the effect of topical application of AP-1 inhibitors in treating inflammatory skin disorders.
Methods: Immunohistochemistry was conducted to detect phosphorylated AP-1/c-Jun expression of skin lesions in AD patients. In the in vivo study, 1 % T-5224 ointment was topically applied for 8 days to the ears of 2,4 dinitrofluorobenzene challenged AD-like dermatitis model mice. Baricitinib, a conventional therapeutic agent Janus kinase (JAK) inhibitor, was also topically applied. In the in vitro study, human epidermal keratinocytes were treated with T-5224 and stimulated with AD-related cytokines.
Results: AP-1/c-Jun was phosphorylated at skin lesions in AD patients. In vivo, topical T-5224 application inhibited ear swelling (P < 0.001), restored filaggrin (Flg) expression (P < 0.01), and generally suppressed immune-related pathways. T-5224 significantly suppressed Il17a and l17f expression, whereas baricitinib did not.Baricitinib suppressed Il4, Il19, Il33 and Ifnb expression, whereas T-5224 did not. Il1a, Il1b, Il23a, Ifna, S100a8, and S100a9 expression was cooperatively downregulated following the combined use of T5224 and baricitinib. In vitro, T-5224 restored the expression of FLG and loricrin (LOR) (P < 0.05) and suppressed IL33 expression (P < 0.05) without affecting cell viability and cytotoxicity.
Conclusions: Topical T-5224 ameliorates clinical manifestations of AD-like dermatitis in mice. The effect of this inhibitor is amplified via combined use with JAK inhibitors. en-copyright= kn-copyright= en-aut-name=SasakuraMinori en-aut-sei=Sasakura en-aut-mei=Minori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=UrakamiHitoshi en-aut-sei=Urakami en-aut-mei=Hitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TachibanaKota en-aut-sei=Tachibana en-aut-mei=Kota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IkedaKenta en-aut-sei=Ikeda en-aut-mei=Kenta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HasuiKen-Ichi en-aut-sei=Hasui en-aut-mei=Ken-Ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MatsudaYoshihiro en-aut-sei=Matsuda en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SunagawaKo en-aut-sei=Sunagawa en-aut-mei=Ko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=EnnishiDaisuke en-aut-sei=Ennishi en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TomidaShuta en-aut-sei=Tomida en-aut-mei=Shuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MorizaneShin en-aut-sei=Morizane en-aut-mei=Shin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Center for Comprehensive Genomic Medicine, Okayama University Hospital kn-affil= affil-num=9 en-affil=Center for Comprehensive Genomic Medicine, Okayama University Hospital kn-affil= affil-num=10 en-affil=Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= en-keyword=AP-1 inhibitor kn-keyword=AP-1 inhibitor en-keyword=Atopic dermatitis kn-keyword=Atopic dermatitis en-keyword=Baricitinib kn-keyword=Baricitinib en-keyword=T-5224 kn-keyword=T-5224 en-keyword=Topical application kn-keyword=Topical application END start-ver=1.4 cd-journal=joma no-vol=7 cd-vols= no-issue=24 article-no= start-page=7459 end-page=7470 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20231214 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Distribution and clinical impact of molecular subtypes with dark zone signature of DLBCL in a Japanese real-world study en-subtitle= kn-subtitle= en-abstract= kn-abstract=The distribution and clinical impact of cell-of-origin (COO) subtypes of diffuse large B-cell lymphoma (DLBCL) outside Western countries remain unknown. Recent literature also suggests that there is an additional COO subtype associated with the germinal center dark zone (DZ) that warrants wider validation to generalize clinical relevance. Here, we assembled a cohort of Japanese patients with untreated DLBCL and determined the refined COO subtypes, which include the DZ signature (DZsig), using the NanoString DLBCL90 assay. To compare the distribution and clinical characteristics of the molecular subtypes, we used a data set from the cohort of British Columbia Cancer (BCC) (n = 804). Through the 1050 patient samples on which DLBCL90 assay was successfully performed in our cohort, 35%, 45%, and 6% of patients were identified to have germinal center B-cell–like (GCB) DLBCL, activated B-cell–like (ABC) DLBCL, and DZsig-positive (DZsigpos) DLBCL, respectively, with the highest prevalence of ABC-DLBCL, differing significantly from the BCC result (P < .001). GCB-DLBCL, ABC-DLBCL, and DZsigpos-DLBCL were associated with 2-year overall survival rates of 88%, 75%, and 66%, respectively (P < .0001), with patients with DZsigpos-DLBCL having the poorest prognosis. In contrast, GCB-DLBCL without DZsig showed excellent outcomes after rituximab-containing immunochemotherapy. DZsigpos-DLBCL was associated with the significant enrichment of tumors with CD10 expression, concurrent MYC/BCL2 expression, and depletion of microenvironmental components (all, P < .05). These results provide evidence of the distinct distribution of clinically relevant molecular subtypes in Japanese DLBCL and that refined COO, as measured by the DLBCL90 assay, is a robust prognostic biomarker that is consistent across geographical areas. en-copyright= kn-copyright= en-aut-name=UrataTomohiro en-aut-sei=Urata en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NaoiYusuke en-aut-sei=Naoi en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=JiangAixiang en-aut-sei=Jiang en-aut-mei=Aixiang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=BoyleMerrill en-aut-sei=Boyle en-aut-mei=Merrill kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SunamiKazutaka en-aut-sei=Sunami en-aut-mei=Kazutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ImaiToshi en-aut-sei=Imai en-aut-mei=Toshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NawaYuichiro en-aut-sei=Nawa en-aut-mei=Yuichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HiramatsuYasushi en-aut-sei=Hiramatsu en-aut-mei=Yasushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=YamamotoKazuhiko en-aut-sei=Yamamoto en-aut-mei=Kazuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=FujiiSoichiro en-aut-sei=Fujii en-aut-mei=Soichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=YoshidaIsao en-aut-sei=Yoshida en-aut-mei=Isao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=YanoTomofumi en-aut-sei=Yano en-aut-mei=Tomofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=ChijimatsuRyota en-aut-sei=Chijimatsu en-aut-mei=Ryota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=MurakamiHiroyuki en-aut-sei=Murakami en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=IkeuchiKazuhiro en-aut-sei=Ikeuchi en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=KobayashiHiroki en-aut-sei=Kobayashi en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=TaniKatsuma en-aut-sei=Tani en-aut-mei=Katsuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=UjiieHideki en-aut-sei=Ujiie en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=InoueHirofumi en-aut-sei=Inoue en-aut-mei=Hirofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=TomidaShuta en-aut-sei=Tomida en-aut-mei=Shuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=YamamotoAkira en-aut-sei=Yamamoto en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=KondoTakumi en-aut-sei=Kondo en-aut-mei=Takumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=FujiwaraHideaki en-aut-sei=Fujiwara en-aut-mei=Hideaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=AsadaNoboru en-aut-sei=Asada en-aut-mei=Noboru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= en-aut-name=NishimoriHisakazu en-aut-sei=Nishimori en-aut-mei=Hisakazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=25 ORCID= en-aut-name=FujiiKeiko en-aut-sei=Fujii en-aut-mei=Keiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=26 ORCID= en-aut-name=FujiiNobuharu en-aut-sei=Fujii en-aut-mei=Nobuharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=27 ORCID= en-aut-name=MatsuokaKen-ichi en-aut-sei=Matsuoka en-aut-mei=Ken-ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=28 ORCID= en-aut-name=SawadaKeisuke en-aut-sei=Sawada en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=29 ORCID= en-aut-name=MomoseShuji en-aut-sei=Momose en-aut-mei=Shuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=30 ORCID= en-aut-name=TamaruJun-ichi en-aut-sei=Tamaru en-aut-mei=Jun-ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=31 ORCID= en-aut-name=NishikoriAsami en-aut-sei=Nishikori en-aut-mei=Asami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=32 ORCID= en-aut-name=SatoYasuharu en-aut-sei=Sato en-aut-mei=Yasuharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=33 ORCID= en-aut-name=YoshinoTadashi en-aut-sei=Yoshino en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=34 ORCID= en-aut-name=MaedaYoshinobu en-aut-sei=Maeda en-aut-mei=Yoshinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=35 ORCID= en-aut-name=ScottDavid W. en-aut-sei=Scott en-aut-mei=David W. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=36 ORCID= en-aut-name=EnnishiDaisuke en-aut-sei=Ennishi en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=37 ORCID= affil-num=1 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=British Columbia Cancer, Centre for Lymphoid Cancer kn-affil= affil-num=4 en-affil=British Columbia Cancer, Centre for Lymphoid Cancer kn-affil= affil-num=5 en-affil=Department of Hematology, NHO Okayama Medical Center kn-affil= affil-num=6 en-affil=Department of Hematology and Blood Transfusion, Kochi Health Sciences Center kn-affil= affil-num=7 en-affil=Division of Hematology, Ehime Prefectural Central Hospital kn-affil= affil-num=8 en-affil=Department of Hematology and Oncology, Japanese Red Cross Society Himeji Hospital kn-affil= affil-num=9 en-affil=Department of Hematology and Oncology, Okayama City Hospital kn-affil= affil-num=10 en-affil=Department of Hematology, Japanese Red Cross Okayama Hospital kn-affil= affil-num=11 en-affil=Department of Hematologic Oncology, NHO Shikoku Cancer Center kn-affil= affil-num=12 en-affil=Department of Internal Medicine, Okayama Rosai Hospital kn-affil= affil-num=13 en-affil=Center for Comprehensive Genomic Medicine, Okayama University Hospital kn-affil= affil-num=14 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=15 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=16 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=17 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=18 en-affil=Center for Comprehensive Genomic Medicine, Okayama University Hospital kn-affil= affil-num=19 en-affil=Clinical Genomic Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science kn-affil= affil-num=20 en-affil=Center for Comprehensive Genomic Medicine, Okayama University Hospital kn-affil= affil-num=21 en-affil=Department of Hematology and Oncology, Okayama University Hospital kn-affil= affil-num=22 en-affil=Department of Hematology and Oncology, Okayama University Hospital kn-affil= affil-num=23 en-affil=Department of Hematology and Oncology, Okayama University Hospital kn-affil= affil-num=24 en-affil=Department of Hematology and Oncology, Okayama University Hospital kn-affil= affil-num=25 en-affil=Department of Hematology and Oncology, Okayama University Hospital kn-affil= affil-num=26 en-affil=Department of Hematology and Oncology, Okayama University Hospital kn-affil= affil-num=27 en-affil=Department of Hematology and Oncology, Okayama University Hospital kn-affil= affil-num=28 en-affil=Department of Hematology and Oncology, Okayama University Hospital kn-affil= affil-num=29 en-affil=Department of Pathology, Saitama Medical Center, Saitama Medical University kn-affil= affil-num=30 en-affil=Department of Pathology, Saitama Medical Center, Saitama Medical University kn-affil= affil-num=31 en-affil=Department of Pathology, Saitama Medical Center, Saitama Medical University kn-affil= affil-num=32 en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences kn-affil= affil-num=33 en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences kn-affil= affil-num=34 en-affil=Department of Pathology, Okayama University kn-affil= affil-num=35 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=36 en-affil=British Columbia Cancer, Centre for Lymphoid Cancer kn-affil= affil-num=37 en-affil=Department of Hematology and Oncology, Okayama University Hospital kn-affil= END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue=1 article-no= start-page=8912 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230601 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Identification of genetic loci associated with renal dysfunction after lung transplantation using an ethnic-specific single-nucleotide polymorphism array en-subtitle= kn-subtitle= en-abstract= kn-abstract=Renal dysfunction is a long-term complication associated with an increased mortality after lung transplantation (LT). We investigated the association of single-nucleotide polymorphisms (SNPs) with the development of renal dysfunction after LT using a Japanese-specific SNP array. First, eligible samples of 34 LT recipients were genotyped using the SNP array and divided into two groups, according to the presence of homozygous and heterozygous combinations of mutant alleles of the 162 renal-related SNPs. To identify candidate SNPs, the renal function tests were compared between the two groups for each SNP. Next, we investigated the association between the candidate SNPs and the time course of changes of the estimated glomerular filtration rate (eGFR) in the 99 recipients until 10 years after the LT. Delta eGFR was defined as the difference between the postoperative and preoperative eGFR values. Eight SNPs were identified as the candidate SNPs in the 34 recipients. Validation analysis of these 8 candidate SNPs in all the 99 recipients showed that three SNPs, namely, rs10277115, rs4690095, and rs792064, were associated with significant changes of the Delta eGFR. Pre-transplant identification of high-risk patients for the development of renal dysfunction after LT based on the presence of these SNPs might contribute to providing personalized medicine. en-copyright= kn-copyright= en-aut-name=TomiokaYasuaki en-aut-sei=Tomioka en-aut-mei=Yasuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SugimotoSeiichiro en-aut-sei=Sugimoto en-aut-mei=Seiichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YamamotoHaruchika en-aut-sei=Yamamoto en-aut-mei=Haruchika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TomidaShuta en-aut-sei=Tomida en-aut-mei=Shuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ShiotaniToshio en-aut-sei=Shiotani en-aut-mei=Toshio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TanakaShin en-aut-sei=Tanaka en-aut-mei=Shin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ShienKazuhiko en-aut-sei=Shien en-aut-mei=Kazuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SuzawaKen en-aut-sei=Suzawa en-aut-mei=Ken kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MiyoshiKentaroh en-aut-sei=Miyoshi en-aut-mei=Kentaroh kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=OtaniShinji en-aut-sei=Otani en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=YamamotoHiromasa en-aut-sei=Yamamoto en-aut-mei=Hiromasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=OkazakiMikio en-aut-sei=Okazaki en-aut-mei=Mikio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=YamaneMasaomi en-aut-sei=Yamane en-aut-mei=Masaomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=ToyookaShinichi en-aut-sei=Toyooka en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= affil-num=1 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Center for Comprehensive Genomic Medicine, Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=13 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=14 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= END start-ver=1.4 cd-journal=joma no-vol=77 cd-vols= no-issue=3 article-no= start-page=323 end-page=330 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=202306 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Utility of Comprehensive Genomic Profiling for Precise Diagnosis of Pediatric-Type Diffuse High-Grade Glioma en-subtitle= kn-subtitle= en-abstract= kn-abstract=In the current World Health Organization classification of central nervous system tumors, comprehensive genetic and epigenetic analyses are considered essential for precise diagnosis. A 14-year-old male patient who presented with a cerebellar tumor was initially diagnosed with glioblastoma and treated with radiation and concomitant temozolomide chemotherapy after resection. During maintenance temozolomide therapy, a new contrast-enhanced lesion developed in the bottom of the cavity formed by the resection. A second surgery was performed, but the histological findings in specimens from the second surgery were different from those of the first surgery. Although genome-wide DNA methylation profiling was conducted using frozen tissue for a precise diagnosis, the proportion of tumor cells was insufficient and only normal cerebellum was observed. We then performed comprehensive genetic analysis using formalin-fixed paraffin-embedded sections, which revealed MYCN amplification without alteration of IDH1, IDH2, or Histone H3. Finally, the patient was diagnosed with pediatric-type diffuse high-grade glioma, H3-wildtype and IDH-wildtype. In conclusion, comprehensive genetic and epigenetic analysis should be considered in pediatric brain tumor cases. en-copyright= kn-copyright= en-aut-name=MakinoKeigo en-aut-sei=Makino en-aut-mei=Keigo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OtaniYoshihiro en-aut-sei=Otani en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FujiiKentaro en-aut-sei=Fujii en-aut-mei=Kentaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IshidaJoji en-aut-sei=Ishida en-aut-mei=Joji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HiranoShuichiro en-aut-sei=Hirano en-aut-mei=Shuichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SurugaYasuki en-aut-sei=Suruga en-aut-mei=Yasuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=WashioKana en-aut-sei=Washio en-aut-mei=Kana kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NishidaKenji en-aut-sei=Nishida en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=YanaiHiroyuki en-aut-sei=Yanai en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=TomidaShuta en-aut-sei=Tomida en-aut-mei=Shuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=EnnishiDaisuke en-aut-sei=Ennishi en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=DateIsao en-aut-sei=Date en-aut-mei=Isao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Departments of Pediatrics, Okayama University Hospital kn-affil= affil-num=8 en-affil=Departments of Pathology, Okayama University Hospital kn-affil= affil-num=9 en-affil=Departments of Pathology, Okayama University Hospital kn-affil= affil-num=10 en-affil=Center for Comprehensive Genomic Medicine, Okayama University Hospital kn-affil= affil-num=11 en-affil=Center for Comprehensive Genomic Medicine, Okayama University Hospital kn-affil= affil-num=12 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=comprehensive genomic profiling kn-keyword=comprehensive genomic profiling en-keyword=pediatric brain tumor kn-keyword=pediatric brain tumor en-keyword=genome-wide DNA methylation kn-keyword=genome-wide DNA methylation en-keyword=MYCN kn-keyword=MYCN END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue= article-no= start-page=1187479 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230518 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Etiology of recurrent cystitis in postmenopausal women based on vaginal microbiota and the role of Lactobacillus vaginal suppository en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: The vaginal microbiota can be altered by uropathogenic bacteria associated with recurrent cystitis (RC), and the vaginal administration of Lactobacillus have suggested certain effects to prevent RC. The relationship between vaginal microbiota and the development of RC has not been elucidated. We aimed to clarify the etiology of RC from vaginal microbiota and importance of vaginal Lactobacillus.
Methods: Vaginal samples obtained from 39 postmenopausal women were classified into four groups: healthy controls; uncomplicated cystitis; RC; and prevention (prevented RC by Lactobacillus crispatus-containing vaginal suppositories). Principal coordinate analysis and beta-diversity analysis was used to assess 16S rRNA gene sequencing data from the vaginal microbiome.
Results: Cluster analysis divided the vaginal bacterial communities among 129 vaginal samples into three clusters (A, B, and C). Fourteen of 14 (100%) samples from the RC group and 51 of 53 (96%) samples from the prevention group were in clusters B and C, while 29 of 38 (76%) samples from the healthy group and 14 of 24 (58%) samples from the uncomplicated cystitis group were in cluster A. The principal coordinate analysis showed that plots in the uncomplicated cystitis group were similar to the healthy group, indicating a large separation between the RC group and the uncomplicated cystitis group. On beta-diversity analysis, there were significant differences between the healthy group and the uncomplicated cystitis group (p = 0.045), and between the RC group and the uncomplicated cystitis group or the healthy group (p = 0.001, p = 0.001, respectively). There were no significant differences between the RC group and the prevention group (p = 0.446). The top six taxa were as follows: Prevotella, Lactobacillus, Streptococcus, Enterobacteriaceae, Anaerococcus, and Bifidobacterium. Among patients with RC, Lactobacillus was undetectable before administration of suppositories, while the median relative abundance of Lactobacillus was 19% during administration of suppositories (p = 0.0211), reducing the average cystitis episodes per year (6.3 vs. 2.4, p = 0.0015).
Conclusion: The vaginal microbiota of postmenopausal women with RC is differed from healthy controls and uncomplicated cystitis in terms of lack of Lactobacillus and relatively dominant of Enterobacteriaceae. Vaginal administration of Lactobacillus-containing suppositories can prevent RC by stabilizing vaginal dysbiosis and causing a loss of pathogenic bacteria virulence. en-copyright= kn-copyright= en-aut-name=SekitoTakanori en-aut-sei=Sekito en-aut-mei=Takanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=WadaKoichiro en-aut-sei=Wada en-aut-mei=Koichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IshiiAyano en-aut-sei=Ishii en-aut-mei=Ayano kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IwataTakehiro en-aut-sei=Iwata en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MatsubaraTakehiro en-aut-sei=Matsubara en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TomidaShuta en-aut-sei=Tomida en-aut-mei=Shuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=WatanabeMasami en-aut-sei=Watanabe en-aut-mei=Masami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ArakiMotoo en-aut-sei=Araki en-aut-mei=Motoo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SadahiraTakuya en-aut-sei=Sadahira en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= affil-num=2 en-affil=Department of Urology, Shimane University Faculty of Medicine kn-affil= affil-num=3 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= affil-num=4 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= affil-num=5 en-affil=Okayama University Hospital Biobank, Okayama University Hospital kn-affil= affil-num=6 en-affil=Center for Comprehensive Genomic Medicine, Okayama University Hospital kn-affil= affil-num=7 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= affil-num=8 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= affil-num=9 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= en-keyword=cystitis kn-keyword=cystitis en-keyword=vagina kn-keyword=vagina en-keyword=microbiota kn-keyword=microbiota en-keyword=Lactobacillus kn-keyword=Lactobacillus en-keyword=urinary tract infection kn-keyword=urinary tract infection END start-ver=1.4 cd-journal=joma no-vol=2022 cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220724 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Drug repositioning of tranilast to sensitize a cancer therapy by targeting cancer-associated fibroblast en-subtitle= kn-subtitle= en-abstract= kn-abstract=Cancer-associated fibroblasts (CAFs) are a major component of the tumor microenvironment that mediate resistance of cancer cells to anticancer drugs. Tranilast is an antiallergic drug that suppresses the release of cytokines from various inflammatory cells. In this study, we investigated the inhibitory effect of tranilast on the interactions between non-small cell lung cancer (NSCLC) cells and the CAFs in the tumor microenvironment. Three EGFR-mutant NSCLC cell lines, two KRAS-mutant cell lines, and three CAFs derived from NSCLC patients were used. To mimic the tumor microenvironment, the NSCLC cells were cocultured with the CAFs in vitro, and the molecular profiles and sensitivity to molecular targeted therapy were assessed. Crosstalk between NSCLC cells and CAFs induced multiple biological effects on the NSCLC cells both in vivo and in vitro, including activation of the STAT3 signaling pathway, promotion of xenograft tumor growth, induction of epithelial-mesenchymal transition (EMT), and acquisition of resistance to molecular-targeted therapy, including EGFR-mutant NSCLC cells to osimertinib and of KRAS-mutant NSCLC cells to selumetinib. Treatment with tranilast led to inhibition of IL-6 secretion from the CAFs, which, in turn, resulted in inhibition of CAF-induced phospho-STAT3 upregulation. Tranilast also inhibited CAF-induced EMT in the NSCLC cells. Finally, combined administration of tranilast with molecular-targeted therapy reversed the CAF-mediated resistance of the NSCLC cells to the molecular-targeted drugs, both in vitro and in vivo. Our results showed that combined administration of tranilast with molecular-targeted therapy is a possible new treatment strategy to overcome drug resistance caused by cancer-CAF interaction. en-copyright= kn-copyright= en-aut-name=OchiKosuke en-aut-sei=Ochi en-aut-mei=Kosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SuzawaKen en-aut-sei=Suzawa en-aut-mei=Ken kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ThuYin Min en-aut-sei=Thu en-aut-mei=Yin Min kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TakatsuFumiaki en-aut-sei=Takatsu en-aut-mei=Fumiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TsudakaShimpei en-aut-sei=Tsudaka en-aut-mei=Shimpei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ZhuYidan en-aut-sei=Zhu en-aut-mei=Yidan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NakataKentaro en-aut-sei=Nakata en-aut-mei=Kentaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TakedaTatsuaki en-aut-sei=Takeda en-aut-mei=Tatsuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ShienKazuhiko en-aut-sei=Shien en-aut-mei=Kazuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=YamamotoHiromasa en-aut-sei=Yamamoto en-aut-mei=Hiromasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=OkazakiMikio en-aut-sei=Okazaki en-aut-mei=Mikio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=SugimotoSeiichiro en-aut-sei=Sugimoto en-aut-mei=Seiichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=ShienTadahiko en-aut-sei=Shien en-aut-mei=Tadahiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=OkamotoYoshiharu en-aut-sei=Okamoto en-aut-mei=Yoshiharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=TomidaShuta en-aut-sei=Tomida en-aut-mei=Shuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=ToyookaShinichi en-aut-sei=Toyooka en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= affil-num=1 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Departments of Pharmacy, Okayama University Hospital kn-affil= affil-num=9 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=13 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=14 en-affil=Department of Veterinary Clinical Medicine, Joint School of Veterinary Medicine, Tottori University kn-affil= affil-num=15 en-affil=Center for Comprehensive Genomic Medicine, Okayama University Hospital kn-affil= affil-num=16 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=cancer-associated fibroblast kn-keyword=cancer-associated fibroblast en-keyword=drug resistance kn-keyword=drug resistance en-keyword=tranilast kn-keyword=tranilast END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue=1 article-no= start-page=7297 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220504 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=One-step nucleic acid amplification for intraoperative diagnosis of lymph node metastasis in lung cancer patients: a single-center prospective study en-subtitle= kn-subtitle= en-abstract= kn-abstract=One-step nucleic acid amplification (OSNA) is a rapid intraoperative molecular detection technique for sentinel node assessment via the quantitative measurement of target cytokeratin 19 (CK19) mRNA to determine the presence of metastasis. It has been validated in breast cancer but its application in lung cancer has not been adequately investigated. 214 LNs from 105 patients with 100 primary lung cancers, 2 occult primary lung tumors, and 3 metastatic lung tumors, who underwent surgical lung resection with LN dissection between February 2018 and January 2020, were assessed. Resected LNs were divided into two parts: one was snap-frozen for OSNA and the other underwent rapidly frozen histological examination. Intraoperatively collected LNs were evaluated by OSNA using loop-mediated isothermal amplification and compared with intraoperative pathological diagnosis as a control. Among 214 LNs, 14 were detected as positive by OSNA, and 11 were positive by both OSNA and intraoperative pathological diagnosis. The sensitivity and specificity of OSNA was 84.6% and 98.5%, respectively. The results of 5 of 214 LNs were discordant, and the remainder all matched (11 positive and 198 negative) with a concordance rate of 97.7%. Although the analysis of public mRNA expression data from cBioPortal showed that CK19 expression varies greatly depending on the cancer type and histological subtype, the results of the five cases, except for primary lung cancer, were consistent. OSNA provides sufficient diagnostic accuracy and speed and can be applied to the intraoperative diagnosis of LN metastasis for non-small cell lung cancer. en-copyright= kn-copyright= en-aut-name=NambaKei en-aut-sei=Namba en-aut-mei=Kei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SuzawaKen en-aut-sei=Suzawa en-aut-mei=Ken kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ShienKazuhiko en-aut-sei=Shien en-aut-mei=Kazuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MiuraAkihiro en-aut-sei=Miura en-aut-mei=Akihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakahashiYuta en-aut-sei=Takahashi en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MiyauchiShunsaku en-aut-sei=Miyauchi en-aut-mei=Shunsaku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ArakiKota en-aut-sei=Araki en-aut-mei=Kota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NakataKentaro en-aut-sei=Nakata en-aut-mei=Kentaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TomidaShuta en-aut-sei=Tomida en-aut-mei=Shuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=TanakaShin en-aut-sei=Tanaka en-aut-mei=Shin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MiyoshiKentaroh en-aut-sei=Miyoshi en-aut-mei=Kentaroh kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=OtaniShinji en-aut-sei=Otani en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=YamamotoHiromasa en-aut-sei=Yamamoto en-aut-mei=Hiromasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=OkazakiMikio en-aut-sei=Okazaki en-aut-mei=Mikio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=SugimotoSeiichiro en-aut-sei=Sugimoto en-aut-mei=Seiichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=SohJunichi en-aut-sei=Soh en-aut-mei=Junichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=YamaneMasaomi en-aut-sei=Yamane en-aut-mei=Masaomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=ToyookaShinichi en-aut-sei=Toyooka en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= affil-num=1 en-affil=Department of Pathology, Memorial Sloan Kettering Cancer Center kn-affil= affil-num=2 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Center for Comprehensive Genomic Medicine, Okayama University Hospital kn-affil= affil-num=10 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=13 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=14 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=15 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=16 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=17 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=18 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= END start-ver=1.4 cd-journal=joma no-vol=23 cd-vols= no-issue=1 article-no= start-page=20 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220207 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Identification of targetable kinases in idiopathic pulmonary fibrosis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background Tyrosine kinase activation plays an important role in the progression of pulmonary fibrosis. In this study, we analyzed the expression of 612 kinase-coding and cancer-related genes using next-generation sequencing to identify potential therapeutic targets for idiopathic pulmonary fibrosis (IPF). Methods Thirteen samples from five patients with IPF (Cases 1-5) and eight samples from four patients without IPF (control) were included in this study. Six of the thirteen samples were obtained from different lung segments of a single patient who underwent bilateral pneumonectomy. Gene expression analysis of IPF lung tissue samples (n = 13) and control samples (n = 8) was performed using SureSelect RNA Human Kinome Kit. The expression of the selected genes was further confirmed at the protein level by immunohistochemistry (IHC). Results Gene expression analysis revealed a correlation between the gene expression signatures and the degree of fibrosis, as assessed by Ashcroft score. In addition, the expression analysis indicated a stronger heterogeneity among the IPF lung samples than among the control lung samples. In the integrated analysis of the 21 samples, DCLK1 and STK33 were found to be upregulated in IPF lung samples compared to control lung samples. However, the top most upregulated genes were distinct in individual cases. DCLK1, PDK4, and ERBB4 were upregulated in IPF case 1, whereas STK33, PIM2, and SYK were upregulated in IPF case 2. IHC revealed that these proteins were expressed in the epithelial layer of the fibrotic lesions. Conclusions We performed a comprehensive kinase expression analysis to explore the potential therapeutic targets for IPF. We found that DCLK1 and STK33 may serve as potential candidate targets for molecular targeted therapy of IPF. In addition, PDK4, ERBB4, PIM2, and SYK might also serve as personalized therapeutic targets of IPF. Additional large-scale studies are warranted to develop personalized therapies for patients with IPF. en-copyright= kn-copyright= en-aut-name=HigoHisao en-aut-sei=Higo en-aut-mei=Hisao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OhashiKadoaki en-aut-sei=Ohashi en-aut-mei=Kadoaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TomidaShuta en-aut-sei=Tomida en-aut-mei=Shuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OkawaSachi en-aut-sei=Okawa en-aut-mei=Sachi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamamotoHiromasa en-aut-sei=Yamamoto en-aut-mei=Hiromasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SugimotoSeiichiro en-aut-sei=Sugimoto en-aut-mei=Seiichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SenooSatoru en-aut-sei=Senoo en-aut-mei=Satoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MakimotoGo en-aut-sei=Makimoto en-aut-mei=Go kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NinomiyaKiichiro en-aut-sei=Ninomiya en-aut-mei=Kiichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=NakasukaTakamasa en-aut-sei=Nakasuka en-aut-mei=Takamasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=NishiiKazuya en-aut-sei=Nishii en-aut-mei=Kazuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=TaniguchiAkihiko en-aut-sei=Taniguchi en-aut-mei=Akihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=KuboToshio en-aut-sei=Kubo en-aut-mei=Toshio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=IchiharaEiki en-aut-sei=Ichihara en-aut-mei=Eiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=HottaKatsuyuki en-aut-sei=Hotta en-aut-mei=Katsuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=MiyaharaNobuaki en-aut-sei=Miyahara en-aut-mei=Nobuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=MaedaYoshinobu en-aut-sei=Maeda en-aut-mei=Yoshinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=ToyookaShinichi en-aut-sei=Toyooka en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=KiuraKatsuyuki en-aut-sei=Kiura en-aut-mei=Katsuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= affil-num=1 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=2 en-affil=Department of Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=3 en-affil=Center for Comprehensive Genomic Medicine, Okayama University Hospital kn-affil= affil-num=4 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=5 en-affil=Department of Thoracic Surgery, Okayama University Hospital kn-affil= affil-num=6 en-affil=Organ Transplant Center, Okayama University Hospital kn-affil= affil-num=7 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=8 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=9 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=10 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=11 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=12 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=13 en-affil=Center for Clinical Oncology, Okayama University Hospital kn-affil= affil-num=14 en-affil=Department of Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=15 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=16 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=17 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=18 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=19 en-affil=Department of Respiratory Medicine, Okayama University Hospital kn-affil= en-keyword=Idiopathic pulmonary fibrosis kn-keyword=Idiopathic pulmonary fibrosis en-keyword=RNA sequencing kn-keyword=RNA sequencing en-keyword=Molecular therapeutic target kn-keyword=Molecular therapeutic target en-keyword=Personalized therapy kn-keyword=Personalized therapy END start-ver=1.4 cd-journal=joma no-vol=7 cd-vols= no-issue=1 article-no= start-page=e148960 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220111 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Resident stroma-secreted chemokine CCL2 governs myeloid-derived suppressor cells in the tumor microenvironment en-subtitle= kn-subtitle= en-abstract= kn-abstract=Accumulating evidence has shown that cancer stroma and BM-derived cells (BMDCs) in the tumor microenvironment (TME) play vital roles in tumor progression. However, the mechanism by which oral cancer stroma recruits any particular subset of BMDCs remains largely unknown. Here, we sought to identify the subset of BMDCs that is recruited by cancer stroma. We established a sequential transplantation model in BALB/c nude mice, including (a) BM transplantation of GFP-expressing cells and (b) coxenografting of patient-derived stroma (PDS; 2 cases, designated PDS1 and PDS2) with oral cancer cells (HSC-2). As controls, xenografting was performed with HSC-2 alone or in combination with normal human dermal fibroblasts (HDF). PDS1, PDS2, and HDF all promoted BMDC migration in vitro and recruitment in vivo. Multicolor immunofluorescence revealed that the PDS coxenografts recruited Arginase-1(+)CD11b(+)GR1(+)GFP(+) cells, which are myeloid-derived suppressor cells (MDSCs), to the TME, whereas the HDF coxenograft did not. Screening using microarrays revealed that PDS1 and PDS2 expressed CCL2 mRNA (encoding C-C motif chemokine ligand 2) at higher levels than did HDF. Indeed, PDS xenografts contained significantly higher proportions of CCL2(+) stromal cells and CCR2(+)Arginase-1(+)CD11b(+)GR1(+) MDSCs (as receiver cells) than the HDF coxenograft. Consistently, a CCL2 synthesis inhibitor and a CCR2 antagonist significantly inhibited the PDS-driven migration of BM cells in vitro. Furthermore, i.p. injection of the CCR2 antagonist to the PDS xenograft models significantly reduced the CCR2(+)Arginase-1(+)CD11b(+)GR1(+) MDSC infiltration to the TME. In conclusion, oral cancer stroma-secreted CCL2 is a key signal for recruiting CCR2(+) MDSCs from BM to the TME. en-copyright= kn-copyright= en-aut-name=OoMay Wathone en-aut-sei=Oo en-aut-mei=May Wathone kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KawaiHotaka en-aut-sei=Kawai en-aut-mei=Hotaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TakabatakeKiyofumi en-aut-sei=Takabatake en-aut-mei=Kiyofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TomidaShuta en-aut-sei=Tomida en-aut-mei=Shuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=EguchiTakanori en-aut-sei=Eguchi en-aut-mei=Takanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OnoKisho en-aut-sei=Ono en-aut-mei=Kisho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ShanQiusheng en-aut-sei=Shan en-aut-mei=Qiusheng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OharaToshiaki en-aut-sei=Ohara en-aut-mei=Toshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=YoshidaSaori en-aut-sei=Yoshida en-aut-mei=Saori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=OmoriHaruka en-aut-sei=Omori en-aut-mei=Haruka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=SukegawaShintaro en-aut-sei=Sukegawa en-aut-mei=Shintaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=NakanoKeisuke en-aut-sei=Nakano en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=OkamotoKuniaki en-aut-sei=Okamoto en-aut-mei=Kuniaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=SasakiAkira en-aut-sei=Sasaki en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=NagatsukaHitoshi en-aut-sei=Nagatsuka en-aut-mei=Hitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= affil-num=1 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Center for Comprehensive Genomic Medicine, Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=11 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=12 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=13 en-affil=Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=14 en-affil=Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=15 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=11 cd-vols= no-issue=1 article-no= start-page=13125 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210623 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Reduced dose of PTCy followed by adjuvant alpha-galactosylceramide enhances GVL effect without sacrificing GVHD suppression en-subtitle= kn-subtitle= en-abstract= kn-abstract=Posttransplantation cyclophosphamide (PTCy) has become a popular option for haploidentical hematopoietic stem cell transplantation (HSCT). However, personalized methods to adjust immune intensity after PTCy for each patient's condition have not been well studied. Here, we investigated the effects of reducing the dose of PTCy followed by alpha -galactosylceramide (alpha -GC), a ligand of iNKT cells, on the reciprocal balance between graft-versus-host disease (GVHD) and the graft-versus-leukemia (GVL) effect. In a murine haploidentical HSCT model, insufficient GVHD prevention after reduced-dose PTCy was efficiently compensated for by multiple administrations of alpha -GC. The ligand treatment maintained the enhanced GVL effect after reduced-dose PTCy. Phenotypic analyses revealed that donor-derived B cells presented the ligand and induced preferential skewing to the NKT2 phenotype rather than the NKT1 phenotype, which was followed by the early recovery of all T cell subsets, especially CD4(+)Foxp3(+) regulatory T cells. These studies indicate that alpha -GC administration soon after reduced-dose PTCy restores GVHD-preventing activity and maintains the GVL effect, which is enhanced by reducing the dose of PTCy. Our results provide important information for the development of a novel strategy to optimize PTCy-based transplantation, particularly in patients with a potential relapse risk. en-copyright= kn-copyright= en-aut-name=NakamuraMakoto en-aut-sei=Nakamura en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MeguriYusuke en-aut-sei=Meguri en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IkegawaShuntaro en-aut-sei=Ikegawa en-aut-mei=Shuntaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KondoTakumi en-aut-sei=Kondo en-aut-mei=Takumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SumiiYuichi en-aut-sei=Sumii en-aut-mei=Yuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=FukumiTakuya en-aut-sei=Fukumi en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IwamotoMiki en-aut-sei=Iwamoto en-aut-mei=Miki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SandoYasuhisa en-aut-sei=Sando en-aut-mei=Yasuhisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SugiuraHiroyuki en-aut-sei=Sugiura en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=AsadaNoboru en-aut-sei=Asada en-aut-mei=Noboru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=EnnishiDaisuke en-aut-sei=Ennishi en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=TomidaShuta en-aut-sei=Tomida en-aut-mei=Shuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=Fukuda-KawaguchiEmi en-aut-sei=Fukuda-Kawaguchi en-aut-mei=Emi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=IshiiYasuyuki en-aut-sei=Ishii en-aut-mei=Yasuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=MaedaYoshinobu en-aut-sei=Maeda en-aut-mei=Yoshinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=MatsuokaKen-Ichi en-aut-sei=Matsuoka en-aut-mei=Ken-Ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= affil-num=1 en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Hematology and Oncology, Okayama University Hospital kn-affil= affil-num=11 en-affil=Department of Hematology and Oncology, Okayama University Hospital kn-affil= affil-num=12 en-affil=Center for Comprehensive Genomic Medicine, Okayama University Hospital kn-affil= affil-num=13 en-affil=REGiMMUNE Corporation kn-affil= affil-num=14 en-affil=REGiMMUNE Corporation kn-affil= affil-num=15 en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=16 en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= END start-ver=1.4 cd-journal=joma no-vol=71 cd-vols= no-issue= article-no= start-page=360 end-page=364 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210303 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Best practices for the extraction of genomic DNA from formalin‐fixed paraffin‐embedded tumor tissue for cancer genomic profiling tests en-subtitle= kn-subtitle= en-abstract= kn-abstract=Recently, two cancer genomic profiling tests have been approved in Japan and implemented in routine clinical practice: the FDA‐approved FoundationOne CDx test, and the OncoGuide NCC Oncopanel test. The quality and quantity of DNA significantly affects the sequencing results; therefore, preparing a sufficient amount of high‐quality DNA for clinical cancer genomic profiling tests is important. We examined the best practices for the extraction of cancer genomic DNA from formalin‐fixed paraffin‐embedded (FFPE) tumor tissues of pancreatic, lung and colon cancer specimens. We found that the quality of cancer genomic DNA extracted from 10‐μm‐thick FFPE samples improved significantly, compared with that from 4‐μm‐thick FFPE samples, suggesting that 10‐μm‐thick FFPE samples are preferable for clinical cancer genomic profiling tests. For convenience, we created a quick reference table for calculating the required number of FFPE slides. en-copyright= kn-copyright= en-aut-name=InoueHirofumi en-aut-sei=Inoue en-aut-mei=Hirofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TomidaShuta en-aut-sei=Tomida en-aut-mei=Shuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HoriguchiShigeru en-aut-sei=Horiguchi en-aut-mei=Shigeru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KatoHironari en-aut-sei=Kato en-aut-mei=Hironari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MatsuokaHiromi en-aut-sei=Matsuoka en-aut-mei=Hiromi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SanehiraEtsuko en-aut-sei=Sanehira en-aut-mei=Etsuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MatsuokaMasashi en-aut-sei=Matsuoka en-aut-mei=Masashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YanaiHiroyuki en-aut-sei=Yanai en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HirasawaAkira en-aut-sei=Hirasawa en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=ToyookaShinichi en-aut-sei=Toyooka en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Clinical Genomic Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science kn-affil= affil-num=2 en-affil=Center for Comprehensive Genomic Medicine, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science kn-affil= affil-num=4 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science kn-affil= affil-num=5 en-affil=Department of Pathology, Okayama University Hospital kn-affil= affil-num=6 en-affil=Department of Pathology, Okayama University Hospital kn-affil= affil-num=7 en-affil=Department of Pathology, Okayama University Hospital kn-affil= affil-num=8 en-affil=Department of Pathology, Okayama University Hospital kn-affil= affil-num=9 en-affil=Clinical Genomic Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science kn-affil= affil-num=10 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science kn-affil= en-keyword=cancer genomic profiling tests kn-keyword=cancer genomic profiling tests en-keyword=formalin‐fixed paraffin‐embedded (FFPE) tumor tissue kn-keyword=formalin‐fixed paraffin‐embedded (FFPE) tumor tissue en-keyword= genomic DNA extraction kn-keyword= genomic DNA extraction END start-ver=1.4 cd-journal=joma no-vol=140 cd-vols= no-issue=5 article-no= start-page=657 end-page=661 dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200501 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=ゲノム医療におけるデータサイエンティストの役割と育成 en-subtitle= kn-subtitle= en-abstract= kn-abstract=The development of specialized training programs for medical personnel, particularly nurses, clinical laboratory technicians, and pharmacists, is considered critical for the promotion of genomic medicine throughout Japan. Specifically, medical personnel skilled at analyzing and understanding high-throughput genomic data are in high demand. In this symposium, we will introduce the basic knowledge and skills necessary for processing genomic data. en-copyright= kn-copyright= en-aut-name=TomidaShuta en-aut-sei=Tomida en-aut-mei=Shuta kn-aut-name=冨田秀太 kn-aut-sei=冨田 kn-aut-mei=秀太 aut-affil-num=1 ORCID= en-aut-name=MoritaMizuki en-aut-sei=Morita en-aut-mei=Mizuki kn-aut-name=森田瑞樹 kn-aut-sei=森田 kn-aut-mei=瑞樹 aut-affil-num=2 ORCID= en-aut-name=YamashitaNoriyuki en-aut-sei=Yamashita en-aut-mei=Noriyuki kn-aut-name=山下範之 kn-aut-sei=山下 kn-aut-mei=範之 aut-affil-num=3 ORCID= en-aut-name=HirasawaAkira en-aut-sei=Hirasawa en-aut-mei=Akira kn-aut-name=平沢晃 kn-aut-sei=平沢 kn-aut-mei=晃 aut-affil-num=4 ORCID= en-aut-name=ToyookaShinichi en-aut-sei=Toyooka en-aut-mei=Shinichi kn-aut-name=豊岡伸一 kn-aut-sei=豊岡 kn-aut-mei=伸一 aut-affil-num=5 ORCID= affil-num=1 en-affil=Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil=岡山大学大学院医歯薬学総合研究科 affil-num=2 en-affil=Department of Biorepository Research and Networking, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil=岡山大学大学院医歯薬学総合研究科クリニカルバイオバンクネットワーキング事業化研究講座 affil-num=3 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil=岡山大学病院新医療研究開発センター affil-num=4 en-affil=Department of Clinical Genomic Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil=岡山大学大学院医歯薬学総合研究科臨床遺伝子診療科 affil-num=5 en-affil=Department of General Thoracic Surgery, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil=岡山大学大学院医歯薬学総合研究科呼吸器・乳腺内分泌外科 en-keyword=genomic medicine kn-keyword=genomic medicine en-keyword=tumor mutation burden kn-keyword=tumor mutation burden en-keyword=biomedical data science kn-keyword=biomedical data science en-keyword=bioinformatics kn-keyword=bioinformatics END start-ver=1.4 cd-journal=joma no-vol=20 cd-vols= no-issue=6 article-no= start-page=393 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=202012 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Detection of epidermal growth factor receptor mutations in exhaled breath condensate using droplet digital polymerase chain reaction en-subtitle= kn-subtitle= en-abstract= kn-abstract=The detection of certain oncogenic driver mutations, including those of epidermal growth factor receptor (EGFR), is essential for determining treatment strategies for advanced non‑small cell lung cancer (NSCLC). The current study assessed the feasibility of testing exhaled breath condensate (EBC) for EGFR mutations by droplet digital PCR (ddPCR). Samples were collected from 12 patients with NSCLC harboring EGFR mutations that were admitted to Okayama University Hospital between June 1, 2014 and December 31, 2017. A total of 21 EBC samples were collected using the RTube™ method and EGFR mutations (L858R, exon 19 deletions or T790M) were assessed through ddPCR analysis (EBC‑ddPCR). A total of 3 healthy volunteer samples were also tested to determine a threshold value for each mutation. Various patient characteristics were determined, including sex (3 males and 9 females), age (range 54‑81 years; median, 66 years), smoking history (10 had never smoked; 2 were former smokers), histology (12 patients exhibited adenocarcinoma), clinical stage (9 patients were stage IV; 3 exhibited post‑operative recurrence) and EGFR mutation type (4 had L858R; 8 had exon 19 deletions; 8 had T790M). EBC‑ddPCR demonstrated positive droplets in 8 of the 12 patients. The sensitivity and specificity of each mutation was as follows: 27.3 and 80.0% for EGFR L858R, 30.0 and 90.9% for EGFR Ex19del, and 22.2 and 100% for EGFR T790M. EBC‑ddPCR analysis of EGFR mutations exhibited modest sensitivity and acceptable specificity. EBC‑ddPCR is a minimally invasive and replicable procedure and may be a complementary method for EGFR testing in patients where blood or tissue sampling proves difficult. en-copyright= kn-copyright= en-aut-name=NishiiKazuya en-aut-sei=Nishii en-aut-mei=Kazuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OhashiKadoaki en-aut-sei=Ohashi en-aut-mei=Kadoaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TamuraTomoki en-aut-sei=Tamura en-aut-mei=Tomoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NinomiyaKiichiro en-aut-sei=Ninomiya en-aut-mei=Kiichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MatsubaraTakehiro en-aut-sei=Matsubara en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SenooSatoru en-aut-sei=Senoo en-aut-mei=Satoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KanoHirohisa en-aut-sei=Kano en-aut-mei=Hirohisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=WatanabeHiromi en-aut-sei=Watanabe en-aut-mei=Hiromi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=OdaNaohiro en-aut-sei=Oda en-aut-mei=Naohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MakimotoGo en-aut-sei=Makimoto en-aut-mei=Go kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=HigoHisao en-aut-sei=Higo en-aut-mei=Hisao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=KatoYuka en-aut-sei=Kato en-aut-mei=Yuka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=NinomiyaTakashi en-aut-sei=Ninomiya en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=KuboToshio en-aut-sei=Kubo en-aut-mei=Toshio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=YamamotoHiromasa en-aut-sei=Yamamoto en-aut-mei=Hiromasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=TomidaShuta en-aut-sei=Tomida en-aut-mei=Shuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=HottaKatsuyuki en-aut-sei=Hotta en-aut-mei=Katsuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=TabataMasahiro en-aut-sei=Tabata en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=ToyookaShinichi en-aut-sei=Toyooka en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=MaedaYoshinobu en-aut-sei=Maeda en-aut-mei=Yoshinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=KiuraKatsuyuki en-aut-sei=Kiura en-aut-mei=Katsuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= affil-num=1 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Okayama University Hospital Biobank kn-affil= affil-num=6 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=13 en-affil=Department of Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=14 en-affil=Center for Clinical Oncology, Okayama University Hospital kn-affil= affil-num=15 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=16 en-affil=Okayama University Hospital Biobank kn-affil= affil-num=17 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=18 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=19 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=20 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=21 en-affil=Department of Respiratory Medicine, Okayama University Hospital kn-affil= en-keyword=non-small cell lung cancer kn-keyword=non-small cell lung cancer en-keyword=epidermal growth factor receptor mutations kn-keyword=epidermal growth factor receptor mutations en-keyword=droplet digital PCR kn-keyword=droplet digital PCR en-keyword=exhaled breath condensate kn-keyword=exhaled breath condensate en-keyword=EGFR-TKIs kn-keyword=EGFR-TKIs END start-ver=1.4 cd-journal=joma no-vol=529 cd-vols= no-issue=3 article-no= start-page=760 end-page=765 dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200827 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Overcoming epithelial-mesenchymal transition-mediated drug resistance with monensin-based combined therapy in non-small cell lung cancer en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background
The epithelial-mesenchymal transition (EMT) is a key process in tumor progression and metastasis and is also associated with drug resistance. Thus, controlling EMT status is a research of interest to conquer the malignant tumors.
Materials and methods
A drug repositioning analysis of transcriptomic data from a public cell line database identified monensin, a widely used in veterinary medicine, as a candidate EMT inhibitor that suppresses the conversion of the EMT phenotype. Using TGF-β-induced EMT cell line models, the effects of monensin on the EMT status and EMT-mediated drug resistance were assessed.
Results
TGF-β treatment induced EMT in non-small cell lung cancer (NSCLC) cell lines and the EGFR-mutant NSCLC cell lines with TGF-β-induced EMT acquired resistance to EGFR-tyrosine kinase inhibitor. The addition of monensin effectively suppressed the TGF-β-induced-EMT conversion, and restored the growth inhibition and the induction of apoptosis by the EGFR-tyrosine kinase inhibitor.
Conclusion
Our data suggested that combined therapy with monensin might be a useful strategy for preventing EMT-mediated acquired drug resistance. en-copyright= kn-copyright= en-aut-name=OchiKosuke en-aut-sei=Ochi en-aut-mei=Kosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SuzawaKen en-aut-sei=Suzawa en-aut-mei=Ken kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TomidaShuta en-aut-sei=Tomida en-aut-mei=Shuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ShienKazuhiko en-aut-sei=Shien en-aut-mei=Kazuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakanoJui en-aut-sei=Takano en-aut-mei=Jui kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MiyauchiShunsaku en-aut-sei=Miyauchi en-aut-mei=Shunsaku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TakedaTatsuaki en-aut-sei=Takeda en-aut-mei=Tatsuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MiuraAkihiro en-aut-sei=Miura en-aut-mei=Akihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ArakiKota en-aut-sei=Araki en-aut-mei=Kota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=NakataKentaro en-aut-sei=Nakata en-aut-mei=Kentaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=YamamotoHiromasa en-aut-sei=Yamamoto en-aut-mei=Hiromasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=OkazakiMikio en-aut-sei=Okazaki en-aut-mei=Mikio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=SugimotoSeiichiro en-aut-sei=Sugimoto en-aut-mei=Seiichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=ShienTadahiko en-aut-sei=Shien en-aut-mei=Tadahiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=YamaneMasaomi en-aut-sei=Yamane en-aut-mei=Masaomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=AzumaKazuo en-aut-sei=Azuma en-aut-mei=Kazuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=OkamotoYoshiharu en-aut-sei=Okamoto en-aut-mei=Yoshiharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=ToyookaShinichi en-aut-sei=Toyooka en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= affil-num=1 en-affil=Department of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Center for Comprehensive Genomic Medicine, Okayama University Hospital kn-affil= affil-num=4 en-affil=Department of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Clinical Pharmacy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Department of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=13 en-affil=Department of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=14 en-affil=Department of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=15 en-affil=Department of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=16 en-affil=Department of Veterinary Clinical Medicine, Joint School of Veterinary Medicine, Tottori University kn-affil= affil-num=17 en-affil=Department of Veterinary Clinical Medicine, Joint School of Veterinary Medicine, Tottori University kn-affil= affil-num=18 en-affil=Department of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Monensin kn-keyword=Monensin en-keyword=Epithelial-mesenchymal transition kn-keyword=Epithelial-mesenchymal transition en-keyword=Non-small cell lung cancer kn-keyword=Non-small cell lung cancer en-keyword=Drug repositioning kn-keyword=Drug repositioning en-keyword=Drug resistance kn-keyword=Drug resistance END start-ver=1.4 cd-journal=joma no-vol=109 cd-vols= no-issue= article-no= start-page=239 end-page=249 dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200519 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Microbiome composition comparison in oral and atherosclerotic plaque from patients with and without periodontitis en-subtitle= kn-subtitle= en-abstract= kn-abstract=There is no conclusive evidence regarding a causal relationship between periodontitis and atherosclerosis. In this study, we examined the microbiome in the oral cavity and atheromatous plaques from atherosclerosis patients with or without periodontitis to investigate the role of oral bacteria in the formation of atheromatous plaques. We chose four patients with and without periodontitis, who had undergone carotid endarterectomy. Bacterial samples were extracted from the tongue surface, from periodontal pocket (during the oral examination), and from the atheromatous plaques (APs). We investigated the general and oral conditions from each patient and performed next-generation sequencing (NGS) analysis for all bacterial samples. There were no significant differences between both groups concerning general conditions. However, the microbiome patterns of the gingival pocket showed differences depending on the absence or presence of periodontitis, while those of the tongue surface were relatively similar. The microbiome pattern of the atheromatous plaques was entirely different from that on the tongue surface and gingival pocket, and oral bacteria were seldom detected. However, the microbiome pattern in atheromatous plaques was different in the presence or absence of periodontitis. These results suggested that oral bacteria did not affect the formation of atheromatous plaques directly. en-copyright= kn-copyright= en-aut-name=IsoshimaDaichi en-aut-sei=Isoshima en-aut-mei=Daichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YamashiroKeisuke en-aut-sei=Yamashiro en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MatsunagaKazuyuki en-aut-sei=Matsunaga en-aut-mei=Kazuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TaniguchiMakoto en-aut-sei=Taniguchi en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MatsubaraTakehiro en-aut-sei=Matsubara en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TomidaShuta en-aut-sei=Tomida en-aut-mei=Shuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OtaShinzo en-aut-sei=Ota en-aut-mei=Shinzo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SatoMichiyoshi en-aut-sei=Sato en-aut-mei=Michiyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ShimoeYutaka en-aut-sei=Shimoe en-aut-mei=Yutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KohriyamaTatsuo en-aut-sei=Kohriyama en-aut-mei=Tatsuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=AriasZulema en-aut-sei=Arias en-aut-mei=Zulema kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=OmoriKazuhiro en-aut-sei=Omori en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=YamamotoTadashi en-aut-sei=Yamamoto en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=TakashibaShogo en-aut-sei=Takashiba en-aut-mei=Shogo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= affil-num=1 en-affil=Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Okayama University Hospital kn-affil= affil-num=3 en-affil=Okayama University Hospital kn-affil= affil-num=4 en-affil=Oral Microbiome Center, Taniguchi Dental Clinic kn-affil= affil-num=5 en-affil=Okayama University Hospital kn-affil= affil-num=6 en-affil=Okayama University Hospital kn-affil= affil-num=7 en-affil=Department of Neurology, Brain Attack Center Ota Memorial Hospital kn-affil= affil-num=8 en-affil=Department of Neurology, Brain Attack Center Ota Memorial Hospital kn-affil= affil-num=9 en-affil=Department of Neurology, Brain Attack Center Ota Memorial Hospital kn-affil= affil-num=10 en-affil=Department of Neurology, Brain Attack Center Ota Memorial Hospital kn-affil= affil-num=11 en-affil= Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Okayama University Hospital kn-affil= affil-num=13 en-affil=Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=14 en-affil=Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= en-keyword=Microbiome kn-keyword=Microbiome en-keyword=Atherosclerosis kn-keyword=Atherosclerosis en-keyword=Periodontitis kn-keyword=Periodontitis en-keyword=Next-generating sequencing kn-keyword=Next-generating sequencing en-keyword=Oral bacteria kn-keyword=Oral bacteria END start-ver=1.4 cd-journal=joma no-vol=2020 cd-vols= no-issue= article-no= start-page=9349132 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200227 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=DV200 Index for Assessing RNA Integrity in Next-Generation Sequencing en-subtitle= kn-subtitle= en-abstract= kn-abstract=Poor quality of biological samples will result in an inaccurate analysis of next-generation sequencing (NGS). Therefore, methods to accurately evaluate sample integrity are needed. Among methods for evaluating RNA quality, the RNA integrity number equivalent (RINe) is widely used, whereas the DV200, which evaluates the percentage of fragments of >200 nucleotides, is also used as a quality assessment standard. In this study, we compared the RINe and DV200 RNA quality indexes to determine the most suitable RNA index for the NGS analysis. Seventy-one RNA samples were extracted from formalin-fixed paraffin-embedded tissue samples (n=30), fresh-frozen samples (n=25), or cell lines (n=16). After assessing RNA quality using the RINe and DV200, we prepared two kinds of stranded mRNA sequencing libraries. Finally, we calculated the correlation between each RNA quality index and the amount of library product (1(st) PCR product per input RNA). The DV200 measure showed stronger correlation with the amount of library product than the RINe (R2=0.8208 for the DV200 versus 0.6927 for the RINe). Receiver operating characteristic curve analyses revealed that the DV200 was the better marker for predicting efficient library production than the RINe using a threshold of >10 ng/ng for the amount of the 1(st) PCR product per input RNA (cutoff value for the RINe and DV200, 2.3 and 66.1%; area under the curve, 0.99 and 0.91; sensitivity, 82% and 92%; and specificity, 93% and 100%, respectively). Our results indicate that NGS libraries prepared using RNA samples with the DV200 value>66.1% exhibit greater sensitivity and specificity than those prepared with the RINe values>2.3. These findings suggest that the DV200 is superior to the RINe, especially for low-quality RNA, because it is a more consistent assessment of the amount of the 1(st) NGS library product per input. en-copyright= kn-copyright= en-aut-name=MatsubaraTakehiro en-aut-sei=Matsubara en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SohJunichi en-aut-sei=Soh en-aut-mei=Junichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MoritaMizuki en-aut-sei=Morita en-aut-mei=Mizuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=UwaboTakahiro en-aut-sei=Uwabo en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TomidaShuta en-aut-sei=Tomida en-aut-mei=Shuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=FujiwaraToshiyoshi en-aut-sei=Fujiwara en-aut-mei=Toshiyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KanazawaSusumu en-aut-sei=Kanazawa en-aut-mei=Susumu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ToyookaShinichi en-aut-sei=Toyooka en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HirasawaAkira en-aut-sei=Hirasawa en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Okayama University Hospital Biobank, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Surgery, Division of Thoracic Surgery, Kindai University Faculty of Medicine kn-affil= affil-num=3 en-affil=Department of Biomedical Informatics,Okayama University Graduate School of Interdisciplinary Science and Engineering in Health Systems kn-affil= affil-num=4 en-affil=Department of Biomedical Informatics,Okayama University Graduate School of Interdisciplinary Science and Engineering in Health Systems kn-affil= affil-num=5 en-affil=Department of Biobank, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine,Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Radiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of General Thoracic Surgery, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine,Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Clinical Genomic Medicine, Okayama University Graduate School of Medicine,Dentistry and Pharmaceutical Sciences kn-affil= END start-ver=1.4 cd-journal=joma no-vol=111 cd-vols= no-issue=3 article-no= start-page=849 end-page=856 dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=20191219 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=YES1 activation induces acquired resistance to neratinib in HER2-amplified breast and lung cancers en-subtitle= kn-subtitle= en-abstract= kn-abstract=Molecular-targeted therapies directed against human epidermal growth factor receptor 2 (HER2) are evolving for various cancers. Neratinib is an irreversible pan-HER tyrosine kinase inhibitor and has been approved by the FDA as an effective drug for HER2-positive breast cancer. However, acquired resistance of various cancers to molecular-targeted drugs is an issue of clinical concern, and emergence of resistance to neratinib is also considered inevitable. In this study, we established various types of neratinib-resistant cell lines from HER2-amplified breast and lung cancer cell lines using several drug exposure conditions. We analyzed the mechanisms of emergence of the resistance in these cell lines and explored effective strategies to overcome the resistance. Our results revealed that amplification of YES1, which is a member of the SRC family, was amplified in two neratinib-resistant breast cancer cell lines and one lung cancer cell line. Knockdown of YES1 by siRNA and pharmacological inhibition of YES1 by dasatinib restored the sensitivity of the YES1-amplified cell lines to neratinib in vitro. Combined treatment with dasatinib and neratinib inhibited tumor growth in vivo. This combination also induced downregulation of signaling molecules such as HER2, AKT and MAPK. Our current results indicate that YES1 plays an important role in the emergence of resistance to HER2-targeted drugs, and that dasatinib enables such acquired resistance to neratinib to be overcome. en-copyright= kn-copyright= en-aut-name=TakedaTatsuaki en-aut-sei=Takeda en-aut-mei=Tatsuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YamamotoHiromasa en-aut-sei=Yamamoto en-aut-mei=Hiromasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SuzawaKen en-aut-sei=Suzawa en-aut-mei=Ken kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TomidaShuta en-aut-sei=Tomida en-aut-mei=Shuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MiyauchiShunsaku en-aut-sei=Miyauchi en-aut-mei=Shunsaku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ArakiKota en-aut-sei=Araki en-aut-mei=Kota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NakataKentaro en-aut-sei=Nakata en-aut-mei=Kentaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MiuraAkihiro en-aut-sei=Miura en-aut-mei=Akihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NambaKei en-aut-sei=Namba en-aut-mei=Kei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=ShienKazuhiko en-aut-sei=Shien en-aut-mei=Kazuhiko kn-aut-name=\ kn-aut-sei= kn-aut-mei=\ aut-affil-num=10 ORCID= en-aut-name=SohJunichi en-aut-sei=Soh en-aut-mei=Junichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=ShienTadahiko en-aut-sei=Shien en-aut-mei=Tadahiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=KitamuraYoshihisa en-aut-sei=Kitamura en-aut-mei=Yoshihisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=SendoToshiaki en-aut-sei=Sendo en-aut-mei=Toshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=ToyookaShinichi en-aut-sei=Toyooka en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= affil-num=1 en-affil=Department of Clinical Pharmacy, Okayama University Graduate School of Medicine,Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery,Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery,Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Center for Comprehensive Genomic Medicine, Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery,Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery,Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery,Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery,Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery,Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery,Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery,Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery,Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=13 en-affil=Department of Clinical Pharmacy, Okayama University Graduate School of Medicine,Dentistry and Pharmaceutical Sciences kn-affil= affil-num=14 en-affil=Department of Clinical Pharmacy, Okayama University Graduate School of Medicine,Dentistry and Pharmaceutical Sciences kn-affil= affil-num=15 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery,Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=breast cancer kn-keyword=breast cancer en-keyword=drug resistance kn-keyword=drug resistance en-keyword=lung cancer kn-keyword=lung cancer en-keyword=neratinib kn-keyword=neratinib en-keyword=YES1 kn-keyword=YES1 END start-ver=1.4 cd-journal=joma no-vol=110 cd-vols= no-issue=8 article-no= start-page=2549 end-page=2557 dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=20190604 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Acquired resistance mechanisms to afatinib in HER2-amplified gastric cancer cells en-subtitle= kn-subtitle= en-abstract= kn-abstract=Cancer treatment, especially that for breast and lung cancer, has entered a new era and continues to evolve, with the development of genome analysis technology and the advent of molecular targeted drugs including tyrosine kinase inhibitors. Nevertheless, acquired drug resistance to molecular targeted drugs is unavoidable, creating a clinically challenging problem. We recently reported the antitumor effect of a pan-HER inhibitor, afatinib, against human epidermal growth factor receptor 2 (HER2)-amplified gastric cancer cells. The purpose of the present study was to identify the mechanisms of acquired afatinib resistance and to investigate the treatment strategies for HER2-amplified gastric cancer cells. Two afatinib-resistant gastric cancer cell lines were established from 2 HER2-amplified cell lines, N87 and SNU216. Subsequently, we investigated the molecular profiles of resistant cells. The activation of the HER2 pathway was downregulated in N87-derived resistant cells, whereas it was upregulated in SNU216-derived resistant cells. In the N87-derived cell line, both MET and AXL were activated, and combination treatment with afatinib and cabozantinib, a multikinase inhibitor that inhibits MET and AXL, suppressed the cell growth of cells with acquired resistance both in vitro and in vivo. In the SNU216-derived cell line, YES1, which is a member of the Src family, was remarkably activated, and dasatinib, a Src inhibitor, exerted a strong antitumor effect in these cells. In conclusion, we identified MET and AXL activation in addition to YES1 activation as novel mechanisms of afatinib resistance in HER2-driven gastric cancer. Our results also indicated that treatment strategies targeting individual mechanisms of resistance are key to overcoming such resistance. en-copyright= kn-copyright= en-aut-name=YoshiokaTakahiro en-aut-sei=Yoshioka en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ShienKazuhiko en-aut-sei=Shien en-aut-mei=Kazuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TakedaTatsuaki en-aut-sei=Takeda en-aut-mei=Tatsuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TakahashiYuta en-aut-sei=Takahashi en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KuriharaEisuke en-aut-sei=Kurihara en-aut-mei=Eisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OgoshiYusuke en-aut-sei=Ogoshi en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NambaKei en-aut-sei=Namba en-aut-mei=Kei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TorigoeHidejiro en-aut-sei=Torigoe en-aut-mei=Hidejiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SatoHiroki en-aut-sei=Sato en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=TomidaShuta en-aut-sei=Tomida en-aut-mei=Shuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=YamamotoHiromasa en-aut-sei=Yamamoto en-aut-mei=Hiromasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=SohJunichi en-aut-sei=Soh en-aut-mei=Junichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=FujiwaraToshiyoshi en-aut-sei=Fujiwara en-aut-mei=Toshiyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=ToyookaShinichi en-aut-sei=Toyooka en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= affil-num=1 en-affil=Departments of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=General Thoracic Surgery, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Clinical Pharmacy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=General Thoracic Surgery, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=General Thoracic Surgery, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=General Thoracic Surgery, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=General Thoracic Surgery, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=General Thoracic Surgery, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=General Thoracic Surgery, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Bioinformatics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=General Thoracic Surgery, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=General Thoracic Surgery, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=13 en-affil=Departments of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=14 en-affil=General Thoracic Surgery, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=afatinib kn-keyword=afatinib en-keyword=gastric cancer kn-keyword=gastric cancer en-keyword=HER2 kn-keyword=HER2 en-keyword=MET kn-keyword=MET en-keyword=YES1 kn-keyword=YES1 END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=11 article-no= start-page=2009 end-page=2018 dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=20190730 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Rapid Acquisition of Alectinib Resistance in ALK-Positive Lung Cancer With High Tumor Mutation Burden en-subtitle= kn-subtitle= en-abstract= kn-abstract=Introduction
The highly selective ALK receptor tyrosine kinase (ALK) inhibitor alectinib is standard therapy for ALK-positive lung cancers; however, some tumors quickly develop resistance. Here, we investigated the mechanism associated with rapid acquisition of resistance using clinical samples.
Methods
Autopsied samples were obtained from lung, liver, and renal tumors from a 51-year-old male patient with advanced ALK-positive lung cancer who had acquired resistance to alectinib in only 3 months. We established an alectinib-resistant cell line (ABC-14) from pleural effusion and an alectinib/crizotinib-resistant cell line (ABC-17) and patient-derived xenograft (PDX) model from liver tumors. Additionally, we performed next-generation sequencing, direct DNA sequencing, and quantitative real-time reverse transcription polymerase chain reaction.
Results
ABC-14 cells harbored no ALK mutations and were sensitive to crizotinib while also exhibiting MNNG HOS transforming gene (MET) gene amplification and amphiregulin overexpression. Additionally, combined treatment with crizotinib/erlotinib inhibited cell growth. ABC-17 and PDX tumors harbored ALK G1202R, and PDX tumors metastasized to multiple organs in vivo, whereas the third-generation ALK-inhibitor, lorlatinib, diminished tumor growth in vitro and in vivo. Next-generation sequencing indicated high tumor mutation burden and heterogeneous tumor evolution. The autopsied lung tumors harbored ALK G1202R (c. 3604 G>A) and the right renal metastasis harbored ALK G1202R (c. 3604 G>C); the mutation thus comprised different codon changes.
Conclusions
High tumor mutation burden and heterogeneous tumor evolution might be responsible for rapid acquisition of alectinib resistance. Timely lorlatinib administration or combined therapy with an ALK inhibitor and other receptor tyrosine-kinase inhibitors might constitute a potent strategy. en-copyright= kn-copyright= en-aut-name=MakimotoGo en-aut-sei=Makimoto en-aut-mei=Go kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OhashiKadoaki en-aut-sei=Ohashi en-aut-mei=Kadoaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TomidaShuta en-aut-sei=Tomida en-aut-mei=Shuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NishiiKazuya en-aut-sei=Nishii en-aut-mei=Kazuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MatsubaraTakehiro en-aut-sei=Matsubara en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KayataniHiroe en-aut-sei=Kayatani en-aut-mei=Hiroe kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HigoHisao en-aut-sei=Higo en-aut-mei=Hisao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NinomiyaKiichiro en-aut-sei=Ninomiya en-aut-mei=Kiichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SatoAkiko en-aut-sei=Sato en-aut-mei=Akiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=WatanabeHiromi en-aut-sei=Watanabe en-aut-mei=Hiromi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=KanoHirohisa en-aut-sei=Kano en-aut-mei=Hirohisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=NinomiyaTakashi en-aut-sei=Ninomiya en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=KuboToshio en-aut-sei=Kubo en-aut-mei=Toshio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=RaiKammei en-aut-sei=Rai en-aut-mei=Kammei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=IchiharaEiki en-aut-sei=Ichihara en-aut-mei=Eiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=HottaKatsuyuki en-aut-sei=Hotta en-aut-mei=Katsuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=TabataMasahiro en-aut-sei=Tabata en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=ToyookaShinichi en-aut-sei=Toyooka en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=TakataMinoru en-aut-sei=Takata en-aut-mei=Minoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=MaedaYoshinobu en-aut-sei=Maeda en-aut-mei=Yoshinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=KiuraKatsuyuki en-aut-sei=Kiura en-aut-mei=Katsuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= affil-num=1 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Okayama University Hospital Biobank, Okayama University Hospital kn-affil= affil-num=4 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Okayama University Hospital Biobank, Okayama University Hospital kn-affil= affil-num=6 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=10 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Department of Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=13 en-affil=Center for Clinical Oncology, Okayama University Hospital kn-affil= affil-num=14 en-affil=Department of Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=15 en-affil=Department of Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=16 en-affil=Center of Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=17 en-affil=Center for Clinical Oncology, Okayama University Hospital kn-affil= affil-num=18 en-affil=Okayama University Hospital Biobank, Okayama University Hospital kn-affil= affil-num=19 en-affil=Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Graduate School of Biostudies, Radiation Biology Center, Kyoto University kn-affil= affil-num=20 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=21 en-affil=Department of Respiratory Medicine, Okayama University Hospital kn-affil= en-keyword=ALK G1202R kn-keyword=ALK G1202R en-keyword=Alectinib kn-keyword=Alectinib en-keyword=Amphiregulin kn-keyword=Amphiregulin en-keyword=MET kn-keyword=MET en-keyword=NSCLC kn-keyword=NSCLC END start-ver=1.4 cd-journal=joma no-vol=21 cd-vols= no-issue=7 article-no= start-page=627 end-page=640 dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=201907 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Critical role of the MCAM-ETV4 axis triggered by extracellular S100A8/A9 in breast cancer aggressiveness en-subtitle= kn-subtitle= en-abstract= kn-abstract=Metastatic breast cancer is the leading cause of cancer-associated death in women. The progression of this fatal disease is associated with inflammatory responses that promote cancer cell growth and dissemination, eventually leading to a reduction of overall survival. However, the mechanism(s) of the inflammation-boosted cancer progression remains unclear. In this study, we found for the first time that an extracellular cytokine, S100A8/A9, accelerates breast cancer growth and metastasis upon binding to a cell surface receptor, melanoma cell adhesion molecule (MCAM). Our molecular analyses revealed an important role of ETS translocation variant 4 (ETV4), which is significantly activated in the region downstream of MCAM upon S100A8/A9 stimulation, in breast cancer progression in vitro as well as in vivo. The MCAM-mediated activation of ETV4 induced a mobile phenotype called epithelial-mesenchymal transition (EMT) in cells, since we found that ETV4 transcriptionally upregulates ZEB1, a strong EMT inducer, at a very high level. In contrast, downregulation of either MCAM or ETV4 repressed EMT, resulting in greatly weakened tumor growth and lung metastasis. Overall, our results revealed that ETV4 is a novel transcription factor regulated by the S100A8/A9-MCAM axis, which leads to EMT through ZEB1 and thereby to metastasis in breast cancer cells. Thus, therapeutic strategies based on our findings might improve patient outcomes. en-copyright= kn-copyright= en-aut-name=ChenYouyi en-aut-sei=Chen en-aut-mei=Youyi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SumardikaI Wayan en-aut-sei=Sumardika en-aut-mei=I Wayan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TomonobuNahoko en-aut-sei=Tomonobu en-aut-mei=Nahoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KinoshitaRie en-aut-sei=Kinoshita en-aut-mei=Rie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=InoueYusuke en-aut-sei=Inoue en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=IiokaHidekazu en-aut-sei=Iioka en-aut-mei=Hidekazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MitsuiYosuke en-aut-sei=Mitsui en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SaitoKen en-aut-sei=Saito en-aut-mei=Ken kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=RumaI Made Winarsa en-aut-sei=Ruma en-aut-mei=I Made Winarsa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=SatoHiroki en-aut-sei=Sato en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=YamauchiAkira en-aut-sei=Yamauchi en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=MurataHitoshi en-aut-sei=Murata en-aut-mei=Hitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=YamamotoKen-ichi en-aut-sei=Yamamoto en-aut-mei=Ken-ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=TomidaShuta en-aut-sei=Tomida en-aut-mei=Shuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=ShienKazuhiko en-aut-sei=Shien en-aut-mei=Kazuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=YamamotoHiromasa en-aut-sei=Yamamoto en-aut-mei=Hiromasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=SohJunichi en-aut-sei=Soh en-aut-mei=Junichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=FutamiJunichiro en-aut-sei=Futami en-aut-mei=Junichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=KuboMiyoko en-aut-sei=Kubo en-aut-mei=Miyoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=PutrantoEndy Widya en-aut-sei=Putranto en-aut-mei=Endy Widya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=MurakamiTakashi en-aut-sei=Murakami en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=LiuMing en-aut-sei=Liu en-aut-mei=Ming kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=HibinoToshihiko en-aut-sei=Hibino en-aut-mei=Toshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=NishiboriMasahiro en-aut-sei=Nishibori en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= en-aut-name=KondoEisaku en-aut-sei=Kondo en-aut-mei=Eisaku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=25 ORCID= en-aut-name=ToyookaShinichi en-aut-sei=Toyooka en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=26 ORCID= en-aut-name=SakaguchiMasakiyo en-aut-sei=Sakaguchi en-aut-mei=Masakiyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=27 ORCID= affil-num=1 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Faculty of Science and Technology, Division of Molecular Science, Gunma University kn-affil= affil-num=6 en-affil=Division of Molecular and Cellular Pathology, Niigata University Graduate School of Medical and Dental Sciences kn-affil= affil-num=7 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Division of Molecular and Cellular Pathology, Niigata University Graduate School of Medical and Dental Sciences kn-affil= affil-num=9 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Departments of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Biochemistry, Kawasaki Medical School kn-affil= affil-num=12 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=13 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=14 en-affil=Department of Biobank, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=15 en-affil=Departments of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=16 en-affil=Departments of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=17 en-affil=Departments of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=18 en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=19 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=20 en-affil=Department of Pediatrics, Dr. Sardjito Hospital/Faculty of Medicine, Universitas Gadjah Mada kn-affil= affil-num=21 en-affil=Department of Microbiology, Faculty of Medicine, Saitama Medical University kn-affil= affil-num=22 en-affil=Department of General Surgery & Bio-Bank of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University kn-affil= affil-num=23 en-affil=Department of Dermatology, Tokyo Medical University kn-affil= affil-num=24 en-affil=Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=25 en-affil=Division of Molecular and Cellular Pathology, Niigata University Graduate School of Medical and Dental Sciences kn-affil= affil-num=26 en-affil=Departments of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=27 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= END