start-ver=1.4
cd-journal=joma
no-vol=24
cd-vols=
no-issue=1
article-no=
start-page=1099
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240916
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Histological differences related to autophagy in the minor salivary gland between primary and secondary types of Sj?gren's syndrome
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Some forms of Sj?grenfs syndrome (SS) follow a clinical course accompanied by systemic symptoms caused by lymphocyte infiltration and proliferation in the liver, kidneys, and other organs. To better understand the clinical outcomes of SS, here we used minor salivary gland tissues from patients and examine their molecular, biological, and pathological characteristics. A retrospective study was performed, combining clinical data and formalin-fixed paraffin-embedded (FFPE) samples from female patients over 60 years of age who underwent biopsies at Okayama University Hospital. We employed direct digital RNA counting with nCounter? and multiplex immunofluorescence analysis with a PhenoCycler? on the labial gland biopsies. We compared FFPE samples from SS patients who presented with other connective tissue diseases (secondary SS) with those from stable SS patients with symptoms restricted to the exocrine glands (primary SS). Secondary SS tissues showed enhanced epithelial damage and lymphocytic infiltration accompanied by elevated expression of autophagy marker genes in the immune cells of the labial glands. The close intercellular distance between helper T cells and B cells positive for autophagy-associated molecules suggests accelerated autophagy in these lymphocytes and potential B cell activation by helper T cells. These findings indicate that examination of FFPE samples from labial gland biopsies can be an effective tool for evaluating molecular histological differences between secondary and primary SS through multiplexed analysis of gene expression and tissue imaging.
en-copyright=
kn-copyright=
en-aut-name=Ono-MinagiHitomi
en-aut-sei=Ono-Minagi
en-aut-mei=Hitomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NohnoTsutomu
en-aut-sei=Nohno
en-aut-mei=Tsutomu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TakabatakeKiyofumi
en-aut-sei=Takabatake
en-aut-mei=Kiyofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TanakaTakehiro
en-aut-sei=Tanaka
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KatsuyamaTakayuki
en-aut-sei=Katsuyama
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MiyawakiKohta
en-aut-sei=Miyawaki
en-aut-mei=Kohta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=WadaJun
en-aut-sei=Wada
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=IbaragiSoichiro
en-aut-sei=Ibaragi
en-aut-mei=Soichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=IidaSeiji
en-aut-sei=Iida
en-aut-mei=Seiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=YoshinoTadashi
en-aut-sei=Yoshino
en-aut-mei=Tadashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=NagatsukaHitoshi
en-aut-sei=Nagatsuka
en-aut-mei=Hitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=SakaiTakayoshi
en-aut-sei=Sakai
en-aut-mei=Takayoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=OhuchiHideyo
en-aut-sei=Ohuchi
en-aut-mei=Hideyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
affil-num=1
en-affil=Department of Cytology and Histology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=2
en-affil=Department of Cytology and Histology, Okayama University Medical School
kn-affil=
affil-num=3
en-affil=Department of Oral Pathology and Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Pathology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Division of Precision Medicine, Kyushu University School of Medicine
kn-affil=
affil-num=7
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Oral and Maxillofacial Reconstructive Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Pathology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=11
en-affil=Department of Oral Pathology and Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=12
en-affil=Department of Rehabilitation for Orofacial Disorders, Osaka University Graduate School of Dentistry
kn-affil=
affil-num=13
en-affil=Department of Cytology and Histology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Autoimmune disease
kn-keyword=Autoimmune disease
en-keyword=Xerostomia
kn-keyword=Xerostomia
en-keyword=Multiplex immunostaining
kn-keyword=Multiplex immunostaining
en-keyword=Spatial analysis
kn-keyword=Spatial analysis
en-keyword=Autophagy
kn-keyword=Autophagy
END
start-ver=1.4
cd-journal=joma
no-vol=476
cd-vols=
no-issue=11
article-no=
start-page=1761
end-page=1775
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240829
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The role of GABA in modulation of taste signaling within the taste bud
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Taste buds contain 2 types of GABA-producing cells: sour-responsive Type III cells and glial-like Type I cells. The physiological role of GABA, released by Type III cells is not fully understood. Here, we investigated the role of GABA released from Type III cells using transgenic mice lacking the expression of GAD67 in taste bud cells (Gad67-cKO mice). Immunohistochemical experiments confirmed the absence of GAD67 in Type III cells of Gad67-cKO mice. Furthermore, no difference was observed in the expression and localization of cell type markers, ectonucleoside triphosphate diphosphohydrolase 2 (ENTPD2), gustducin, and carbonic anhydrase 4 (CA4) in taste buds between wild-type (WT) and Gad67-cKO mice. Short-term lick tests demonstrated that both WT and Gad67-cKO mice exhibited normal licking behaviors to each of the five basic tastants. Gustatory nerve recordings from the chorda tympani nerve demonstrated that both WT and Gad67-cKO mice similarly responded to five basic tastants when they were applied individually. However, gustatory nerve responses to sweet?sour mixtures were significantly smaller than the sum of responses to each tastant in WT mice but not in Gad67-cKO mice. In summary, elimination of GABA signalling by sour-responsive Type III taste cells eliminates the inhibitory cell?cell interactions seen with application of sour?sweet mixtures.
en-copyright=
kn-copyright=
en-aut-name=MikamiAyaka
en-aut-sei=Mikami
en-aut-mei=Ayaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HuangHai
en-aut-sei=Huang
en-aut-mei=Hai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HyodoAiko
en-aut-sei=Hyodo
en-aut-mei=Aiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HorieKengo
en-aut-sei=Horie
en-aut-mei=Kengo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YasumatsuKeiko
en-aut-sei=Yasumatsu
en-aut-mei=Keiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NinomiyaYuzo
en-aut-sei=Ninomiya
en-aut-mei=Yuzo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MitohYoshihiro
en-aut-sei=Mitoh
en-aut-mei=Yoshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=IidaSeiji
en-aut-sei=Iida
en-aut-mei=Seiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=YoshidaRyusuke
en-aut-sei=Yoshida
en-aut-mei=Ryusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Tokyo Dental Junior College
kn-affil=
affil-num=6
en-affil=Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Oral and Maxillofacial Reconstructive Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Gamma-aminobutyric acid
kn-keyword=Gamma-aminobutyric acid
en-keyword=Taste buds
kn-keyword=Taste buds
en-keyword=Glutamate decarboxylase
kn-keyword=Glutamate decarboxylase
en-keyword=Taste mixture
kn-keyword=Taste mixture
en-keyword=Sour
kn-keyword=Sour
en-keyword=Sweet
kn-keyword=Sweet
END
start-ver=1.4
cd-journal=joma
no-vol=9
cd-vols=
no-issue=10
article-no=
start-page=e174618
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240522
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Double-faced CX3CL1 enhances lymphangiogenesis-dependent metastasis in an aggressive subclone of oral squamous cell carcinoma
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Because cancer cells have a genetically unstable nature, they give rise to genetically different variant subclones inside a single tumor. Understanding cancer heterogeneity and subclone characteristics is crucial for developing more efficacious therapies. Oral squamous cell carcinoma (OSCC) is characterized by high heterogeneity and plasticity. On the other hand, CX3C motif ligand 1 (CX3CL1) is a double-faced chemokine with anti- and pro -tumor functions. Our study reported that CX3CL1 functioned differently in tumors with different cancer phenotypes, both in vivo and in vitro. Mouse OSCC 1 (MOC1) and MOC2 cells responded similarly to CX3CL1 in vitro. However, in vivo, CX3CL1 increased keratinization in indolent MOC1 cancer, while CX3CL1 promoted cervical lymphatic metastasis in aggressive MOC2 cancer. These outcomes were due to double-faced CX3CL1 effects on different immune microenvironments indolent and aggressive cancer created. Furthermore, we established that CX3CL1 promoted cancer metastasis via the lymphatic pathway by stimulating lymphangiogenesis and transendothelial migration of lymph -circulating tumor cells. CX3CL1 enrichment in lymphatic metastasis tissues was observed in aggressive murine and human cell lines. OSCC patient samples with CX3CL1 enrichment exhibited a strong correlation with lower overall survival rates and higher recurrence and distant metastasis rates. In conclusion, CX3CL1 is a pivotal factor that stimulates the metastasis of aggressive cancer subclones within the heterogeneous tumors to metastasize, and our study demonstrates the prognostic value of CX3CL1 enrichment in long-term monitoring in OSCC.
en-copyright=
kn-copyright=
en-aut-name=EainHtoo Shwe
en-aut-sei=Eain
en-aut-mei=Htoo Shwe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KawaiHotaka
en-aut-sei=Kawai
en-aut-mei=Hotaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NakayamaMasaaki
en-aut-sei=Nakayama
en-aut-mei=Masaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OoMay Wathone
en-aut-sei=Oo
en-aut-mei=May Wathone
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OharaToshiaki
en-aut-sei=Ohara
en-aut-mei=Toshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=FukuharaYoko
en-aut-sei=Fukuhara
en-aut-mei=Yoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TakabatakeKiyofumi
en-aut-sei=Takabatake
en-aut-mei=Kiyofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=ShanQuisheng
en-aut-sei=Shan
en-aut-mei=Quisheng
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=SoeYamin
en-aut-sei=Soe
en-aut-mei=Yamin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=OnoKisho
en-aut-sei=Ono
en-aut-mei=Kisho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=NakanoKeisuke
en-aut-sei=Nakano
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=MizukawaNobuyoshi
en-aut-sei=Mizukawa
en-aut-mei=Nobuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=IidaSeiji
en-aut-sei=Iida
en-aut-mei=Seiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=NagatsukaHitoshi
en-aut-sei=Nagatsuka
en-aut-mei=Hitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
affil-num=1
en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Oral Microbiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama Universit
kn-affil=
affil-num=6
en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=11
en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=12
en-affil=Department of Oral and Maxillofacial Reconstructive Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=13
en-affil=Department of Oral and Maxillofacial Reconstructive Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=14
en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=165
cd-vols=
no-issue=
article-no=
start-page=106013
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=202409
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Salivary buffering capacity is correlated with umami but not sour taste sensitivity in healthy adult Japanese subjects
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objective: Saliva serves multiple important functions crucial for maintaining a healthy oral and systemic environment. Among them, the pH buffering effect, which is primarily mediated by bicarbonate ions, helps maintain oral homeostasis by neutralizing acidity from ingested foods. Therefore, higher buffering capacity, reflecting the ability to neutralize oral acidity, may influence taste sensitivity, especially for sour taste since it involves sensing H+ ions. This study aims to explore the relationship between salivary buffering capacity and taste sensitivities to the five basic tastes in healthy adult humans.
Design: Eighty seven healthy adult students participated in this study. Resting saliva volume was measured using the spitting method. The liquid colorimetric test was used to assess salivary buffering capacity. The whole-mouth taste testing method was employed to determine the recognition threshold for each tastant (NaCl, sucrose, citric acid, quinine-HCl, monosodium glutamate).
Results: Taste recognition thresholds for sour taste as well as sweet, salty, and bitter tastes showed no correlation with salivary buffering capacity. Interestingly, a negative relationship was observed between recognition threshold for umami taste and salivary buffering capacity. Furthermore, a positive correlation between salivary buffering capacity and resting saliva volume was observed.
Conclusions: Salivary buffering capacity primarily influences sensitivity to umami taste, but not sour and other tastes.
en-copyright=
kn-copyright=
en-aut-name=HyodoAiko
en-aut-sei=Hyodo
en-aut-mei=Aiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MikamiAyaka
en-aut-sei=Mikami
en-aut-mei=Ayaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HorieKengo
en-aut-sei=Horie
en-aut-mei=Kengo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MitohYoshihiro
en-aut-sei=Mitoh
en-aut-mei=Yoshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NinomiyaYuzo
en-aut-sei=Ninomiya
en-aut-mei=Yuzo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=IidaSeiji
en-aut-sei=Iida
en-aut-mei=Seiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YoshidaRyusuke
en-aut-sei=Yoshida
en-aut-mei=Ryusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Oral and Maxillofacial Reconstructive Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=taste recognition threshold
kn-keyword=taste recognition threshold
en-keyword=resting saliva
kn-keyword=resting saliva
en-keyword=bicarbonate
kn-keyword=bicarbonate
en-keyword=xerostomia
kn-keyword=xerostomia
en-keyword=TAS1R
kn-keyword=TAS1R
END
start-ver=1.4
cd-journal=joma
no-vol=17
cd-vols=
no-issue=4
article-no=
start-page=1501
end-page=1515
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230911
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Expression and function of CCN2-derived circRNAs in chondrocytes
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Cellular communication network factor 2 (CCN2) molecules promote endochondral ossification and articular cartilage regeneration, and circular RNAs (circRNAs), which arise from various genes and regulate gene expression by adsorbing miRNAs, are known to be synthesized from CCN2 in human vascular endothelial cells and other types of cells. However, in chondrocytes, not only the function but also the presence of CCN2-derived circRNA remains completely unknown. In the present study, we investigated the expression and function of CCN2-derived circRNAs in chondrocytes. Amplicons smaller than those from known CCN2-derived circRNAs were observed using RT-PCR analysis that could specifically amplify CCN2-derived circRNAs in human chondrocytic HCS-2/8 cells. The nucleotide sequences of the PCR products indicated novel circRNAs in the HCS-2/8 cells that were different from known CCN2-derived circRNAs. Moreover, the expression of several Ccn2-derived circRNAs in murine chondroblastic ATDC5 cells was confirmed and observed to change alongside chondrocytic differentiation. Next, one of these circRNAs was knocked down in HCS-2/8 cells to investigate the function of the human CCN2-derived circRNA. As a result, CCN2-derived circRNA knockdown significantly reduced the expression of aggrecan mRNA and proteoglycan synthesis. Our data suggest that CCN2-derived circRNAs are expressed in chondrocytes and play a role in chondrogenic differentiation.
en-copyright=
kn-copyright=
en-aut-name=KatoSoma
en-aut-sei=Kato
en-aut-mei=Soma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KawataKazumi
en-aut-sei=Kawata
en-aut-mei=Kazumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NishidaTakashi
en-aut-sei=Nishida
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MizukawaTomomi
en-aut-sei=Mizukawa
en-aut-mei=Tomomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TakigawaMasaharu
en-aut-sei=Takigawa
en-aut-mei=Masaharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=IidaSeiji
en-aut-sei=Iida
en-aut-mei=Seiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KubotaSatoshi
en-aut-sei=Kubota
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Oral Maxillofacial Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Chondrocyte
kn-keyword=Chondrocyte
en-keyword=CCN2
kn-keyword=CCN2
en-keyword=Circular RNA
kn-keyword=Circular RNA
en-keyword=ACAN
kn-keyword=ACAN
en-keyword=Chondrocytic differentiation
kn-keyword=Chondrocytic differentiation
END
start-ver=1.4
cd-journal=joma
no-vol=77
cd-vols=
no-issue=1
article-no=
start-page=111
end-page=116
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=202302
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Osteonecrosis of the Jaw in Two Rheumatoid Arthritis Patients Not Treated with a Bisphosphonate
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Medication-related osteonecrosis of the jaw (MRONJ) is a side effect in patients taking bone-modifying agents (BMAs), which are highly beneficial for treating osteoporosis and cancer. Bisphosphonates are prescribed to treat secondary osteoporosis in patients with rheumatoid arthritis (RA). We recently encountered two unusual cases of intraoral ONJ in RA patients who had not been treated with a BMA and did not have features of methotrexate- associated lymphoproliferative disorder. Their ONJ stage II bone exposures were treated by conservative therapy, providing good prognoses. These cases indicate that ONJ can occur in RA patients not treated with bisphosphonates. Several risk factors are discussed.
en-copyright=
kn-copyright=
en-aut-name=AmanoKatsuhiko
en-aut-sei=Amano
en-aut-mei=Katsuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SugauchiAkinari
en-aut-sei=Sugauchi
en-aut-mei=Akinari
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YamadaChiaki
en-aut-sei=Yamada
en-aut-mei=Chiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KogoMikihiko
en-aut-sei=Kogo
en-aut-mei=Mikihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=IidaSeiji
en-aut-sei=Iida
en-aut-mei=Seiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=The first department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry
kn-affil=
affil-num=3
en-affil=Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=The first department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry
kn-affil=
affil-num=5
en-affil=Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=osteonecrosis of the jaw
kn-keyword=osteonecrosis of the jaw
en-keyword=rheumatoid arthritis
kn-keyword=rheumatoid arthritis
en-keyword=risk factor
kn-keyword=risk factor
en-keyword=bisphosphonate
kn-keyword=bisphosphonate
END
start-ver=1.4
cd-journal=joma
no-vol=77
cd-vols=
no-issue=1
article-no=
start-page=97
end-page=104
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=202302
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Treatment of Severe Open Bite Malocclusion with Four-Piece Segmental Horseshoe Le Fort I Osteotomy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Appropriate operations in severe anterior open bite (AOB) cases are extremely complicated to perform because of the multiple surgical procedures involved, the difficulty of predicting posttreatment aesthetics, and the high relapse rate. We herein report a 16-year-old girl with skeletal Class II, severe AOB malocclusion, and crowding with short roots, and aesthetic and functional problems. Four-piece segmental Le Fort I osteotomy with horseshoe osteotomy was performed for maxillary intrusion, and bilateral sagittal split ramus osteotomy (SSRO) and genioplasty were performed for mandibular advancement. The malocclusion and skeletal deformity were significantly improved by the surgical orthodontic treatment. Functional and aesthetic occlusion with an improved facial profile was established, and no further root shortening was observed. Acceptable occlusion and dentition were maintained after a two-year retention period. This strategy of surgical orthodontic treatment with a complicated operative procedure might be effective for correcting certain severe AOB malocclusion cases.
en-copyright=
kn-copyright=
en-aut-name=HoshijimaMitsuhiro
en-aut-sei=Hoshijima
en-aut-mei=Mitsuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OkaNaoki
en-aut-sei=Oka
en-aut-mei=Naoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MatsumuraTatsushi
en-aut-sei=Matsumura
en-aut-mei=Tatsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=IidaSeiji
en-aut-sei=Iida
en-aut-mei=Seiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KamiokaHiroshi
en-aut-sei=Kamioka
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Oral and Maxillofacial Surgery, Wakayama Medical University
kn-affil=
affil-num=4
en-affil=Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=anterior open bite
kn-keyword=anterior open bite
en-keyword=short roots
kn-keyword=short roots
en-keyword=severe crowding
kn-keyword=severe crowding
en-keyword=four-piece segmental horseshoe Le Fort I osteotomy
kn-keyword=four-piece segmental horseshoe Le Fort I osteotomy
END
start-ver=1.4
cd-journal=joma
no-vol=22
cd-vols=
no-issue=22
article-no=
start-page=12392
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=20211117
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Comparing the Osteogenic Potential and Bone Regeneration Capacities of Dedifferentiated Fat Cells and Adipose-Derived Stem Cells In Vitro and In Vivo: Application of DFAT Cells Isolated by a Mesh Method
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: We investigated and compared the osteogenic potential and bone regeneration capacities of dedifferentiated fat cells (DFAT cells) and adipose-derived stem cells (ASCs).
Method: We isolated DFAT cells and ASCs from GFP mice. DFAT cells were established by a new culture method using a mesh culture instead of a ceiling culture. The isolated DFAT cells and ASCs were incubated in osteogenic medium, then alizarin red staining, alkaline phosphatase (ALP) assays, and RT-PCR (for RUNX2, osteopontin, DLX5, osterix, and osteocalcin) were performed to evaluate the osteoblastic differentiation ability of both cell types in vitro. In vivo, the DFAT cells and ASCs were incubated in osteogenic medium for four weeks and seeded on collagen composite scaffolds, then implanted subcutaneously into the backs of mice. We then performed hematoxylin and eosin staining and immunostaining for GFP and osteocalcin.
Results: The alizarin red-stained areas in DFAT cells showed weak calcification ability at two weeks, but high calcification ability at three weeks, similar to ASCs. The ALP levels of ASCs increased earlier than in DFAT cells and showed a significant difference (p < 0.05) at 6 and 9 days. The ALP levels of DFATs were higher than those of ASCs after 12 days. The expression levels of osteoblast marker genes (osterix and osteocalcin) of DFAT cells and ASCs were higher after osteogenic differentiation culture.
Conclusion: DFAT cells are easily isolated from a small amount of adipose tissue and are readily expanded with high purity; thus, DFAT cells are applicable to many tissue-engineering strategies and cell-based therapies.
en-copyright=
kn-copyright=
en-aut-name=TakabatakeKiyofumi
en-aut-sei=Takabatake
en-aut-mei=Kiyofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MatsubaraMasakazu
en-aut-sei=Matsubara
en-aut-mei=Masakazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YamachikaEiki
en-aut-sei=Yamachika
en-aut-mei=Eiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=FujitaYuki
en-aut-sei=Fujita
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ArimuraYuki
en-aut-sei=Arimura
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NakatsujiKazuki
en-aut-sei=Nakatsuji
en-aut-mei=Kazuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NakanoKeisuke
en-aut-sei=Nakano
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NagatsukaHistoshi
en-aut-sei=Nagatsuka
en-aut-mei=Histoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=IidaSeiji
en-aut-sei=Iida
en-aut-mei=Seiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Oral and Maxillofacial Reconstructive Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Oral and Maxillofacial Reconstructive Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Oral and Maxillofacial Reconstructive Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Oral and Maxillofacial Reconstructive Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Oral and Maxillofacial Reconstructive Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=dedifferentiated fat cells (DFAT cells)
kn-keyword=dedifferentiated fat cells (DFAT cells)
en-keyword=adipose-derived stem cells (ASCs)
kn-keyword=adipose-derived stem cells (ASCs)
en-keyword=bone regeneration
kn-keyword=bone regeneration
en-keyword=mesh culture method
kn-keyword=mesh culture method
END
start-ver=1.4
cd-journal=joma
no-vol=75
cd-vols=
no-issue=2
article-no=
start-page=205
end-page=212
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=202104
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Camouflage Treatment for Skeletal Maxillary Protrusion and Lateral Deviation with Classic-Type Ehlers-Danlos Syndrome
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We herein report the case of a 19-year-old female with a transverse discrepancy, skeletal Class II malocclusion, severe crowding with concerns of classic-type Ehlers-Danlos syndrome (EDS), aesthetics problems and functional problems. The main characteristics of classic EDS are loose-jointedness and fragile, easily bruised skin that heals with peculiar gcigarette-paperh scars. The anteroposterior and transverse skeletal discrepancies can generally be resolved by maxilla repositioning and mandibular advancement surgery following pre-surgical orthodontic treatment. However, this patient was treated with orthodontic camouflage but not orthognathic surgery because of the risks of skin bruising, poor healing and a temporomandibular disorder. A satisfactory dental appearance and occlusion were achieved after camouflage treatment with orthodontic anchor screws and the use of Class II elastics, including the preservation of the stomatognathic functions. Acceptable occlusion and dentition were maintained after a two-year retention period. This treatment strategy of orthodontic camouflage using temporary anchorage, such as anchor screws and Class II elastics, may be a viable treatment option for skeletal malocclusion patients with EDS.
en-copyright=
kn-copyright=
en-aut-name=HoshijimaMitsuhiro
en-aut-sei=Hoshijima
en-aut-mei=Mitsuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KawanabeNoriaki
en-aut-sei=Kawanabe
en-aut-mei=Noriaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=IidaSeiji
en-aut-sei=Iida
en-aut-mei=Seiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YamashiroTakashi
en-aut-sei=Yamashiro
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KamiokaHiroshi
en-aut-sei=Kamioka
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University
kn-affil=
affil-num=5
en-affil=Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=asymmetry
kn-keyword=asymmetry
en-keyword=Class II
kn-keyword=Class II
en-keyword=camouflage
kn-keyword=camouflage
en-keyword=orthodontic anchor screw
kn-keyword=orthodontic anchor screw
en-keyword=Ehlers-Danlos syndrome
kn-keyword=Ehlers-Danlos syndrome
END
start-ver=1.4
cd-journal=joma
no-vol=62
cd-vols=
no-issue=3
article-no=
start-page=280
end-page=288
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2020
dt-pub=20200811
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Regulation of cellular communication network factor 2 (CCN2) in breast cancer cells via the cell-type dependent interplay between CCN2 and glycolysis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objectives: Anti-osteoclastic treatments for breast cancer occasionally cause medication-related osteonecrosis of the jaw. Moreover, elevated glycolytic activity, which is known as the Warburg effect, is usually observed in these breast cancer cells. Previously, we found that cellular communication network factor 2 (CCN2) production and glycolysis enhanced each other in chondrocytes. Here, we evaluated the interplay between CCN2 and glycolysis in breast cancer cells, as we suspected a possible involvement of CCN2 in the Warburg effect in highly invasive breast cancer cells.
Methods: Two human breast cancer cell lines with a distinct phenotype were used. Glycolysis was inhibited by using 2 distinct compounds, and gene silencing was performed using siRNA. Glycolysis and the expression of relevant genes were monitored via colorimetric assays and quantitative RT-PCR, respectively.
Results: Although CCN2 expression was almost completely silenced when treating invasive breast cancer cells with a siRNA cocktail against CCN2, glycolytic activity was not affected. Notably, the expression of glycolytic enzyme genes, which was repressed by CCN2 deficiency in chondrocytes, tended to increase upon CCN2 silencing in breast cancer cells. Inhibition of glycolysis, which resulted in the repression of CCN2 expression in chondrocytic cells, did not alter or strongly enhanced CCN2 expression in the invasive and non-invasive breast cancer cells, respectively.
Conclusions: High CCN2 expression levels play a critical role in the invasion and metastasis of breast cancer. Thus, a collapse in the intrinsic repressive machinery of CCN2 due to glycolysis may induce the acquisition of an invasive phenotype in breast cancer cells.
en-copyright=
kn-copyright=
en-aut-name=AkashiSho
en-aut-sei=Akashi
en-aut-mei=Sho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NishidaTakashi
en-aut-sei=Nishida
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MizukawaTomomi
en-aut-sei=Mizukawa
en-aut-mei=Tomomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KawataKazumi
en-aut-sei=Kawata
en-aut-mei=Kazumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TakigawaMasaharu
en-aut-sei=Takigawa
en-aut-mei=Masaharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=IidaSeiji
en-aut-sei=Iida
en-aut-mei=Seiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KubotaSatoshi
en-aut-sei=Kubota
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil= Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil= Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Bone metastasis
kn-keyword=Bone metastasis
en-keyword=Breast cancer
kn-keyword=Breast cancer
en-keyword=CCN2
kn-keyword=CCN2
en-keyword=Glycolysis
kn-keyword=Glycolysis
en-keyword=Warburg effect
kn-keyword=Warburg effect
END
start-ver=1.4
cd-journal=joma
no-vol=9
cd-vols=
no-issue=
article-no=
start-page=8041
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2019
dt-pub=2019529
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Intermittent parathyroid hormone 1-34 induces oxidation and deterioration of mineral and collagen quality in newly formed mandibular bone
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Intermittent parathyroid hormone (PTH) administration is known to promote bone healing after surgical procedures. However, the mechanism and influence of PTH on the mineral and collagen quality of the jaw are not well understood. Most studies have focused on analyzing the bone density and microstructure of the mandible, and have insufficiently investigated its mineral and collagen quality. Oxidative stress activates osteoclasts, produces advanced glycation end products, and worsens mineral and collagen quality. We hypothesized that PTH induces oxidation and affects the mineral and collagen quality of newly formed mandibular bone. To test this, we examined the mineral and collagen quality of newly formed mandibular bone in rats administered PTH, and analyzed serum after intermittent PTH administration to examine the degree of oxidation. PTH administration reduced mineralization and worsened mineral and collagen quality in newly formed bone. In addition, total anti-oxidant capacity in serum was significantly decreased and the oxidative-INDEX was increased among PTH-treated compared to vehicle-treated rats, indicating serum oxidation. In conclusion, intermittent administration of PTH reduced mineral and collagen quality in newly formed mandibular bone. This effect may have been induced by oxidation.
en-copyright=
kn-copyright=
en-aut-name=YoshiokaYohsuke
en-aut-sei=Yoshioka
en-aut-mei=Yohsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamachikaEiki
en-aut-sei=Yamachika
en-aut-mei=Eiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NakanishiMakoto
en-aut-sei=Nakanishi
en-aut-mei=Makoto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NinomiyaTadashi
en-aut-sei=Ninomiya
en-aut-mei=Tadashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=AkashiSho
en-aut-sei=Akashi
en-aut-mei=Sho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KondoSei
en-aut-sei=Kondo
en-aut-mei=Sei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MoritaniNorifumi
en-aut-sei=Moritani
en-aut-mei=Norifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KobayashiYasuhiro
en-aut-sei=Kobayashi
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=FujiiTatsuo
en-aut-sei=Fujii
en-aut-mei=Tatsuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=IidaSeiji
en-aut-sei=Iida
en-aut-mei=Seiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Anatomy, Nihon University School of Dentistry
kn-affil=
affil-num=5
en-affil=Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Division of Hard Tissue Research, Institute for Oral Science, Matsumoto Dental University
kn-affil=
affil-num=9
en-affil=Department of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=49
cd-vols=
no-issue=2
article-no=
start-page=499
end-page=508
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2016
dt-pub=20160531
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=TGF- in jaw tumor fluids induces RANKL expression in stromal fibroblasts
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract= Odontogenic tumors and cysts, arising in the jawbones, grow by resorption and destruction of the jawbones. However, mechanisms underlying bone resorption by odontogenic tumors/cysts remain unclear. Odontogenic tumors/cysts comprise odontogenic epithelial cells and stromal fibroblasts, which originate from the developing tooth germ. It has been demonstrated that odontogenic epithelial cells of the developing tooth germ induce osteoclastogenesis to prevent the tooth germ from invading the developing bone to maintain its structure in developing bones. Thus, we hypothesized that odontogenic epithelial cells of odontogenic tumors/cysts induce osteoclast formation, which plays potential roles in tumor/cyst outgrowth into the jawbone. The purpose of this study was to examine osteoclastogenesis by cytokines, focusing on transforming growth factor- (TGF-), produced by odontogenic epithelial cells. We observed two pathways for receptor activator of NF-B ligand (RANKL) induction by keratocystic odontogenic tumor fluid: the cyclooxygenase-2 (COX-2)/prostaglandin E2 (PGE2) pathway through interleukin-1 (IL-1) signaling and non-COX-2/PGE2 pathway through TGF- receptor signaling. TGF-1 and IL-1 produced by odontogenic tumors/cysts induced osteoclastogenesis directly in the osteoclast precursor cells and indirectly via increased RANKL induction in the stroma.
en-copyright=
kn-copyright=
en-aut-name=YamadaChiaki
en-aut-sei=Yamada
en-aut-mei=Chiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=AikawaTomonao
en-aut-sei=Aikawa
en-aut-mei=Tomonao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OkunoEmi
en-aut-sei=Okuno
en-aut-mei=Emi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MiyagawaKazuaki
en-aut-sei=Miyagawa
en-aut-mei=Kazuaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=AmanoKatsuhiko
en-aut-sei=Amano
en-aut-mei=Katsuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TakahataSosuke
en-aut-sei=Takahata
en-aut-mei=Sosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KimataMasaaki
en-aut-sei=Kimata
en-aut-mei=Masaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OkuraMasaya
en-aut-sei=Okura
en-aut-mei=Masaya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=IidaSeiji
en-aut-sei=Iida
en-aut-mei=Seiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KogoMikihiko
en-aut-sei=Kogo
en-aut-mei=Mikihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University
kn-affil=
affil-num=3
en-affil=Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University
kn-affil=
affil-num=4
en-affil=Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University
kn-affil=
affil-num=5
en-affil=Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University
kn-affil=
affil-num=6
en-affil=Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University
kn-affil=
affil-num=7
en-affil=Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University
kn-affil=
affil-num=8
en-affil=Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University
kn-affil=
affil-num=9
en-affil=Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=70
cd-vols=
no-issue=3
article-no=
start-page=205
end-page=211
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2016
dt-pub=201606
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Structure of a New Palatal Plate and the Artificial Tongue for Articulation Disorder in a Patient with Subtotal Glossectomy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=A palatal augmentation prosthesis (PAP) is used to facilitate improvement in the speech and swallowing functions of patients with tongue resection or tongue movement disorders. However, a PAP?s effect is limited in cases where articulation disorder is severe due to wide glossectomy and/or segmental mandibulectomy. In this paper, we describe speech outcomes of a patient with an articulation disorder following glossectomy and segmental mandibulectomy. We used a palatal plate (PP) based on a PAP, along with an artificial tongue (KAT). Speech improvement was evaluated by a standardized speech intelligibility test consisting of 100 syllables. The speech intelligibility score was significantly higher when the patient wore both the PP and KAT than when he wore neither (p0.013). The conversational intelligibility score was significantly improved with the PP and KAT than without PP and KAT (p0.024). These results suggest that speech function can be improved in patients with hard tissue defects with segmental mandibulectomy using both a PP and a KAT. The nature of the design of the PP and that of the KAT will allow these prostheses to address a wide range of tissue defects.
en-copyright=
kn-copyright=
en-aut-name=KozakiKen-ichi
en-aut-sei=Kozaki
en-aut-mei=Ken-ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KawakamiShigehisa
en-aut-sei=Kawakami
en-aut-mei=Shigehisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KonishiTakayuki
en-aut-sei=Konishi
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OhtaKeiji
en-aut-sei=Ohta
en-aut-mei=Keiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YanoJitsuro
en-aut-sei=Yano
en-aut-mei=Jitsuro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OnodaTomoo
en-aut-sei=Onoda
en-aut-mei=Tomoo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MatsumotoHiroshi
en-aut-sei=Matsumoto
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MizukawaNobuyoshi
en-aut-sei=Mizukawa
en-aut-mei=Nobuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KimataYoshihiro
en-aut-sei=Kimata
en-aut-mei=Yoshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=NishizakiKazunori
en-aut-sei=Nishizaki
en-aut-mei=Kazunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=IidaSeiji
en-aut-sei=Iida
en-aut-mei=Seiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=GofukuAkio
en-aut-sei=Gofuku
en-aut-mei=Akio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=AbeMasanobu
en-aut-sei=Abe
en-aut-mei=Masanobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=MinagiShogo
en-aut-sei=Minagi
en-aut-mei=Shogo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=Okayama Dream Speech Project
en-aut-sei=Okayama Dream Speech Project
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
affil-num=1
en-affil=Department of Dental Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Occlusal and Oral Functional Rehabilitation, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Division of Physical Medicine and Rehabilitation, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Dental Laboratory Division, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Occlusal and Oral Functional Rehabilitation, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Otolaryngology-Head and Neck Surgery Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Plastic and Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of Plastic and Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Otolaryngology-Head and Neck Surgery Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=13
en-affil=Department of Computer Science, Okayama University
kn-affil=
affil-num=14
en-affil=Department of Occlusal and Oral Functional Rehabilitation, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=15
en-affil=
kn-affil=
en-keyword=palatal augmentation prosthesis
kn-keyword=palatal augmentation prosthesis
en-keyword=artificial tongue
kn-keyword=artificial tongue
en-keyword=articulation disorder
kn-keyword=articulation disorder
en-keyword=glossectomy
kn-keyword=glossectomy
en-keyword=mandibulectomy
kn-keyword=mandibulectomy
END
start-ver=1.4
cd-journal=joma
no-vol=69
cd-vols=
no-issue=3
article-no=
start-page=177
end-page=182
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2015
dt-pub=201506
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Maxillary Advancement for Unilateral Crossbite in a Patient with Sleep Apnea Syndrome
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=This article reports the case of a 44-year-old male with skeletal Class III, Angle Class III malocclusion and unilateral crossbite with concerns about obstructive sleep apnea syndrome (OSAS), esthetics and functional problems. To correct the skeletal deformities, the maxilla was anteriorly repositioned by employing LeFort I osteotomy following pre-surgical orthodontic treatment, because a mandibular setback might induce disordered breathing and cause OSAS. After active treatment for 13 months, satisfactory occlusion was achieved and an acceptable facial and oral profile was obtained. In addition, the apnea hypopnea index (AHI) decreased from 18.8 preoperatively to 10.6 postoperatively. Furthermore, after a follow-up period of 7 months, the AHI again significantly decreased from 10.6 to 6.2. In conclusion, surgical advancement of the maxilla using LeFort I osteotomy has proven to be useful in patients with this kind of skeletal malocclusion, while preventing a worsening of the OSAS.
en-copyright=
kn-copyright=
en-aut-name=HoshijimaMitsuhiro
en-aut-sei=Hoshijima
en-aut-mei=Mitsuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HonjoTadashi
en-aut-sei=Honjo
en-aut-mei=Tadashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MoritaniNorifumi
en-aut-sei=Moritani
en-aut-mei=Norifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=IidaSeiji
en-aut-sei=Iida
en-aut-mei=Seiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YamashiroTakashi
en-aut-sei=Yamashiro
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KamiokaHiroshi
en-aut-sei=Kamioka
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=
kn-affil=Departments of Orthodontics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
affil-num=2
en-affil=
kn-affil=Department of Oral and Maxillofacial Surgery, Tottori University Faculty of Medicine
affil-num=3
en-affil=
kn-affil=Departments of Oral and Maxillofacial Reconstructive Surgery, Okayama University Graduate School of Medicine
affil-num=4
en-affil=
kn-affil=Departments of Oral and Maxillofacial Reconstructive Surgery, Okayama University Graduate School of Medicine
affil-num=5
en-affil=
kn-affil=Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University
affil-num=6
en-affil=
kn-affil=Departments of Orthodontics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
en-keyword=LeFort I osteotomy
kn-keyword=LeFort I osteotomy
en-keyword=maxillary advancement
kn-keyword=maxillary advancement
en-keyword=unilateral crossbite
kn-keyword=unilateral crossbite
en-keyword=obstructive sleep apnea syndrome
kn-keyword=obstructive sleep apnea syndrome
END
start-ver=1.4
cd-journal=joma
no-vol=59
cd-vols=
no-issue=12
article-no=
start-page=1334
end-page=1341
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2014
dt-pub=201412
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Assessment of intraoral mucosal pain induced by the application of capsaicin
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objective
To develop an objective method for assessing nociceptive behaviour in an animal model of capsaicin-induced intraoral pain. Changes in nociceptive responses were also examined after injury to the inferior alveolar nerve (IAN).
Design
Nociceptive responses evoked by the intraoral application of various doses of capsaicin were analyzed in lightly anaesthetized rats. The number of c-Fos protein-like immunoreactive (Fos-LI) neurons in the medullary dorsal horn (MDH) induced by the intraoral application of capsaicin was measured. Behavioural and c-Fos responses were also examined 14 days after injury to the IAN.
Results
Larger doses of intraoral capsaicin (1, 10 and 100 g) induced vigorous licking behaviour and c-Fos response in the MDH in a reproducible manner. The magnitudes of both behavioural activity and the c-Fos response from the 10 and 100 g doses of capsaicin were significantly greater than that by the 1 g dose. Injury to the IAN exaggerated the behavioural and c-Fos responses evoked by intraoral capsaicin.
Conclusions
The intraoral application of capsaicin is a valid and reliable method for studying intraoral pain and hyperalgesia following nerve injury.
en-copyright=
kn-copyright=
en-aut-name=TerayamaRyuji
en-aut-sei=Terayama
en-aut-mei=Ryuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MaruhamaKotaro
en-aut-sei=Maruhama
en-aut-mei=Kotaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TsuchiyaHiroki
en-aut-sei=Tsuchiya
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MizutaniMasahide
en-aut-sei=Mizutani
en-aut-mei=Masahide
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=IidaSeiji
en-aut-sei=Iida
en-aut-mei=Seiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SugimotoTomosada
en-aut-sei=Sugimoto
en-aut-mei=Tomosada
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=
kn-affil=Department of Oral Function and Anatomy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
affil-num=2
en-affil=
kn-affil=Department of Oral Function and Anatomy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
affil-num=3
en-affil=
kn-affil=Department of Oral Function and Anatomy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
affil-num=4
en-affil=
kn-affil=Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
affil-num=5
en-affil=
kn-affil=Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
affil-num=6
en-affil=
kn-affil=Department of Oral Function and Anatomy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
en-keyword=Capsaicin
kn-keyword=Capsaicin
en-keyword=Behaviour
kn-keyword=Behaviour
en-keyword=c-Fos
kn-keyword=c-Fos
en-keyword=Medullary dorsal horn
kn-keyword=Medullary dorsal horn
en-keyword=Immunohistochemistry
kn-keyword=Immunohistochemistry
en-keyword=Nerve injury
kn-keyword=Nerve injury
END
start-ver=1.4
cd-journal=joma
no-vol=115
cd-vols=
no-issue=5
article-no=
start-page=854
end-page=865
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2014
dt-pub=201405
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=CCN2 as a Novel Molecule Supporting Energy Metabolism of Chondrocytes
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=CCN2/connective tissue growth factor (CTGF) is a unique molecule that promotes both chondrocytic differentiation and proliferation through its matricellular interaction with a number of extracellular biomolecules. This apparently contradictory functional property of CCN2 suggests its certain role in basic cellular activities such as energy metabolism, which is required for both proliferation and differentiation. Comparative metabolomic analysis of costal chondrocytes isolated from wild-type and Ccn2-null mice revealed overall impaired metabolism in the latter. Among the numerous metabolites analyzed, stable reduction in the intracellular level of ATP, GTP, CTP, or UTP was observed, indicating a profound role of CCN2 in energy metabolism. Particularly, the cellular level of ATP was decreased by more than 50% in the Ccn2-null chondrocytes. The addition of recombinant CCN2 (rCCN2) to cultured Ccn2-null chondrocytes partly redeemed the cellular ATP level attenuated by Ccn2 deletion. Next, in order to investigate the mechanistic background that mediates the reduction in ATP level in these Ccn2-null chondrocytes, we performed transcriptome analysis. As a result, several metabolism-associated genes were found to have been up-regulated or down-regulated in the mutant mice. Up-regulation of a number of ribosomal protein genes was observed upon Ccn2 deletion, whereas a few genes required for aerobic and anaerobic ATP production were down-regulated in the Ccn2-null chondrocytes. Among such genes, reduction in the expression of the enolase 1 gene was of particular note. These findings uncover a novel functional role of CCN2 as a metabolic supporter in the growth-plate chondrocytes, which is required for skeletogenesis in mammals.
en-copyright=
kn-copyright=
en-aut-name=Maeda-UematsuAya
en-aut-sei=Maeda-Uematsu
en-aut-mei=Aya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KubotaSatoshi
en-aut-sei=Kubota
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KawakiHarumi
en-aut-sei=Kawaki
en-aut-mei=Harumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KawataKazumi
en-aut-sei=Kawata
en-aut-mei=Kazumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MiyakeYoshiaki
en-aut-sei=Miyake
en-aut-mei=Yoshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HattoriTakako
en-aut-sei=Hattori
en-aut-mei=Takako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NishidaTakashi
en-aut-sei=Nishida
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MoritaniNorifumi
en-aut-sei=Moritani
en-aut-mei=Norifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=LyonsKaren M.
en-aut-sei=Lyons
en-aut-mei=Karen M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=IidaSeiji
en-aut-sei=Iida
en-aut-mei=Seiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=TakigawaMasaharu
en-aut-sei=Takigawa
en-aut-mei=Masaharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=
kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Biochem & Mol Dent
affil-num=2
en-affil=
kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Biochem & Mol Dent
affil-num=3
en-affil=
kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Biochem & Mol Dent
affil-num=4
en-affil=
kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Biochem & Mol Dent
affil-num=5
en-affil=
kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Orthopaed Surg
affil-num=6
en-affil=
kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Biochem & Mol Dent
affil-num=7
en-affil=
kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Biochem & Mol Dent
affil-num=8
en-affil=
kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Oral & Maxillofacial Reconstruct Surg
affil-num=9
en-affil=
kn-affil=Univ Calif Los Angeles, Sch Med, Dept Orthoped Surg
affil-num=10
en-affil=
kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Oral & Maxillofacial Reconstruct Surg
affil-num=11
en-affil=
kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Biochem & Mol Dent
en-keyword=CCN2
kn-keyword=CCN2
en-keyword=CTGF
kn-keyword=CTGF
en-keyword=CARTILAGE
kn-keyword=CARTILAGE
en-keyword=CHONDROCYTES
kn-keyword=CHONDROCYTES
en-keyword=METABOLISM
kn-keyword=METABOLISM
END
start-ver=1.4
cd-journal=joma
no-vol=64
cd-vols=
no-issue=4
article-no=
start-page=257
end-page=261
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2010
dt-pub=201008
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Atypical Lipomatous Tumor of the Tongue:Report of a Case
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The term atypical lipomatous tumor (ALT) is synonymous with well-differentiated liposarcoma (WDL). This tumor occurs very rarely in the tongue. Thus, it is difficult to predict its prognosis. Although recurrence of ALT/WDL is thought to be unlikely after complete excision, long-term follow-up is necessary when considering the pathologic conditions of this tumor at other sites. Here, we report a case of an ALT of the tongue, with a review of the literature. A 68-year-old man was referred to our hospital because of a tumor on the left side of his tongue. Upon palpation, the tumor was 12mm in diameter, circumscribed, elastic and hard, well demarcated, movable, and painless. We diagnosed the lesion as a lipoma and extirpated the tumor under local anesthesia. Because the specimen was histopathologically diagnosed as an ALT, as a precaution, we excised an additional 5mm from the area surrounding the original tumor under general anesthesia. Three years after the operation, the tongue demonstrated good healing without paresthesia or dysfunction, and to date there has been no evidence of recurrence.
en-copyright=
kn-copyright=
en-aut-name=MoritaniNorifumi
en-aut-sei=Moritani
en-aut-mei=Norifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamadaTomohiro
en-aut-sei=Yamada
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MizobuchiKoichi
en-aut-sei=Mizobuchi
en-aut-mei=Koichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=WakimotoMari
en-aut-sei=Wakimoto
en-aut-mei=Mari
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=IkeyaYoko
en-aut-sei=Ikeya
en-aut-mei=Yoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MatsumuraTatsushi
en-aut-sei=Matsumura
en-aut-mei=Tatsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MishimaKatsuaki
en-aut-sei=Mishima
en-aut-mei=Katsuaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=IidaSeiji
en-aut-sei=Iida
en-aut-mei=Seiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=
kn-affil=Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Hospital
affil-num=2
en-affil=
kn-affil=Department of Oral and Maxillofacial Surgery, Kochi Medical School, Kochi University
affil-num=3
en-affil=
kn-affil=Department of Pathology, Kagawa Rosai Hospital
affil-num=4
en-affil=
kn-affil=Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
affil-num=5
en-affil=
kn-affil=Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
affil-num=6
en-affil=
kn-affil=Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Hospital
affil-num=7
en-affil=
kn-affil=Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Hospital
affil-num=8
en-affil=
kn-affil=Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Hospital
en-keyword=atypical lipomatous tumor
kn-keyword=atypical lipomatous tumor
en-keyword=well-differentiated liposarcoma
kn-keyword=well-differentiated liposarcoma
en-keyword=tongue
kn-keyword=tongue
END