start-ver=1.4 cd-journal=joma no-vol=35 cd-vols= no-issue=2 article-no= start-page=713 end-page=722 dt-received= dt-revised= dt-accepted= dt-pub-year=2012 dt-pub=20120401 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Protective Effects of Radon Inhalation on Carrageenan-Induced Inflammatory Paw Edema in Mice en-subtitle= kn-subtitle= en-abstract= kn-abstract=We assessed whether radon inhalation inhibited carrageenan-induced inflammation in mice. Carrageenan (1% v/v) was injected subcutaneously into paws of mice that had or had not inhaled approximately 2,000 Bq/m3 of radon for 24 h. Radon inhalation significantly increased superoxide dismutase (SOD) and catalase activities and significantly decreased lipid peroxide levels in mouse paws, indicating that radon inhalation activates antioxidative functions. Carrageenan administration induced paw edema and significantly increased tumor necrosis factor-alpha (TNF-α) and nitric oxide in serum. However, radon inhalation significantly reduced carrageenan-induced paw edema. Serum TNF-α levels were lower in the radon-treated mice than in sham-treated mice. In addition, SOD and catalase activities in paws were significantly higher in the radon-treated mice than in the sham-treated mice. These findings indicated that radon inhalation had anti-inflammatory effects and inhibited carrageenan-induced inflammatory paw edema. en-copyright= kn-copyright= en-aut-name=KataokaTakahiro en-aut-sei=Kataoka en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TeraokaJunichi en-aut-sei=Teraoka en-aut-mei=Junichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SakodaAkihiro en-aut-sei=Sakoda en-aut-mei=Akihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NishiyamaYuichi en-aut-sei=Nishiyama en-aut-mei=Yuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamatoKeiko en-aut-sei=Yamato en-aut-mei=Keiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MondenMayuko en-aut-sei=Monden en-aut-mei=Mayuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IshimoriYuu en-aut-sei=Ishimori en-aut-mei=Yuu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NomuraTakaharu en-aut-sei=Nomura en-aut-mei=Takaharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TaguchiTakehito en-aut-sei=Taguchi en-aut-mei=Takehito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=YamaokaKiyonori en-aut-sei=Yamaoka en-aut-mei=Kiyonori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil= kn-affil=Graduate School of Health Sciences, Okayama University affil-num=2 en-affil= kn-affil=Graduate School of Health Sciences, Okayama University affil-num=3 en-affil= kn-affil=Ningyo-toge Environmental Engineering Center, Japan Atomic Energy Agency affil-num=4 en-affil= kn-affil=Graduate School of Health Sciences, Okayama University affil-num=5 en-affil= kn-affil=Graduate School of Health Sciences, Okayama University affil-num=6 en-affil= kn-affil=Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University affil-num=7 en-affil= kn-affil=Ningyo-toge Environmental Engineering Center, Japan Atomic Energy Agency affil-num=8 en-affil= kn-affil=Radiation Safety Research Center, Central Research Institute of Electric Power Industry affil-num=9 en-affil= kn-affil=Graduate School of Health Sciences, Okayama University affil-num=10 en-affil= kn-affil=Graduate School of Health Sciences, Okayama University en-keyword=radon inhalation kn-keyword=radon inhalation en-keyword=inflammation kn-keyword=inflammation en-keyword=carrageenan kn-keyword=carrageenan en-keyword=edema kn-keyword=edema en-keyword=antioxidative function kn-keyword=antioxidative function END