start-ver=1.4 cd-journal=joma no-vol=520 cd-vols= no-issue=3 article-no= start-page=600 end-page=605 dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=20191210 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Development of a model of ischemic heart disease using cardiomyocytes differentiated from human induced pluripotent stem cells en-subtitle= kn-subtitle= en-abstract= kn-abstract=Ischemic heart disease remains the largest cause of death worldwide. Accordingly, many researchers have sought curative options, often using laboratory animal models such as rodents. However, the physiology of the human heart differs significantly from that of the rodent heart. In this study, we developed a model of ischemic heart disease using cardiomyocytes differentiated from human induced pluripotent stem cells (hiPS-CMs). After optimizing the conditions of ischemia, including the concentration of oxygen and duration of application, we evaluated the consequent damage to hiPS-CMs. Notably, exposure to 2% oxygen, 0 mg/ml glucose, and 0% fetal bovine serum increased the percentage of nuclei stained with propidium iodide, an indicator of membrane damage, and decreased cellular viability. These conditions also decreased the contractility of hiPS-CMs. Furthermore, ischemic conditioning increased the mRNA expression of IL-8, consistent with observed conditions in the in vivo heart. Taken together, these findings suggest that our hiPS-CM-based model can provide a useful platform for human ischemic heart disease research. en-copyright= kn-copyright= en-aut-name=WeiHeng en-aut-sei=Wei en-aut-mei=Heng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=WangChen en-aut-sei=Wang en-aut-mei=Chen kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=GuoRui en-aut-sei=Guo en-aut-mei=Rui kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TakahashiKen en-aut-sei=Takahashi en-aut-mei=Ken kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NaruseKeiji en-aut-sei=Naruse en-aut-mei=Keiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Cardiomyocytes kn-keyword=Cardiomyocytes en-keyword=Human induced pluripotent stem cells kn-keyword=Human induced pluripotent stem cells en-keyword=Ischemic heart disease kn-keyword=Ischemic heart disease en-keyword=Myocardial infarction kn-keyword=Myocardial infarction END