start-ver=1.4 cd-journal=joma no-vol=11 cd-vols= no-issue=1 article-no= start-page=4387 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200128 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Formation of bridgmanite-enriched layer at the top lower-mantle during magma ocean solidification en-subtitle= kn-subtitle= en-abstract= kn-abstract=Thermochemical heterogeneities detected today in the Earth's mantle could arise from ongoing partial melting in different mantle regions. A major open question, however, is the level of chemical stratification inherited from an early magma-ocean (MO) solidification. Here we show that the MO crystallized homogeneously in the deep mantle, but with chemical fractionation at depths around 1000 km and in the upper mantle. Our arguments are based on accurate measurements of the viscosity of melts with forsterite, enstatite and diopside compositions up to similar to 30 GPa and more than 3000 K at synchrotron X-ray facilities. Fractional solidification would induce the formation of a bridgmanite-enriched layer at similar to 1000 km depth. This layer may have resisted to mantle mixing by convection and cause the reported viscosity peak and anomalous dynamic impedance. On the other hand, fractional solidification in the upper mantle would have favored the formation of the first crust. en-copyright= kn-copyright= en-aut-name=XieLongjian en-aut-sei=Xie en-aut-mei=Longjian kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YonedaAkira en-aut-sei=Yoneda en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YamazakiDaisuke en-aut-sei=Yamazaki en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ManthilakeGeeth en-aut-sei=Manthilake en-aut-mei=Geeth kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HigoYuji en-aut-sei=Higo en-aut-mei=Yuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TangeYoshinori en-aut-sei=Tange en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=GuignotNicolas en-aut-sei=Guignot en-aut-mei=Nicolas kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KingAndrew en-aut-sei=King en-aut-mei=Andrew kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ScheelMario en-aut-sei=Scheel en-aut-mei=Mario kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=AndraultDenis en-aut-sei=Andrault en-aut-mei=Denis kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Institute for Planetary Materials, Okayama University kn-affil= affil-num=2 en-affil=Institute for Planetary Materials, Okayama University kn-affil= affil-num=3 en-affil=Institute for Planetary Materials, Okayama University kn-affil= affil-num=4 en-affil=Laboratoire Magmas et Volcans, Université Clermont Auvergne, CNRS, IRD, OPGC kn-affil= affil-num=5 en-affil=Japan Synchrotron Radiation Research Institute kn-affil= affil-num=6 en-affil=Japan Synchrotron Radiation Research Institute kn-affil= affil-num=7 en-affil=Synchrotron SOLEIL kn-affil= affil-num=8 en-affil=Synchrotron SOLEIL kn-affil= affil-num=9 en-affil=Synchrotron SOLEIL kn-affil= affil-num=10 en-affil=Laboratoire Magmas et Volcans, Université Clermont Auvergne, CNRS, IRD, OPGC kn-affil= END