このエントリーをはてなブックマークに追加
ID 30964
JaLCDOI
FullText URL
Author
Danjo, Wataru
Fujimura, Naoyuki
Abstract

We investigated the effects of pentoxifylline (PTX) on endotoxin-induced diaphragmatic dysfunction in vitro. Seventy-two rats were divided into 3 groups: a group in which endotoxin (20 mg/kg) was injected intraperitoneally (endotoxin-group), a group in which PTX (100 mg/kg) was injected intraperitoneally 30 min before injection of endotoxin (endotoxin-PTX group), and a group in which only saline was given (sham group). Left hemidiaphragms were removed 4 h after injection of endotoxin. We evaluated the diaphragmatic contractility by twitch characteristics and force-frequency curves in vitro. We measured serum TNF-alpha concentrations, diaphragm malondialdehyde (MDA) levels (an index of oxygen-derived free radical-mediated lipid peroxidation), and diaphragm cAMP concentrations. Diaphragmatic force generation capacity was signifi cantly reduced after injection of endotoxin. Serum TNF-alpha concentrations and diaphragmatic MDA levels were significantly elevated after injection of endotoxin. PTX administration significantly improved diaphragmatic contractility and prevented the elevation in TNF-alpha concentrations and MDA levels after injection of endotoxin. There were no significant changes in the diaphragm cAMP concentrations among the 3 groups. These results demonstrated that PTX administration prevented endotoxin-induced diaphragmatic dysfunction without changing diaphragm muscle cAMP concentrations. The protective effects of PTX against endotoxininduced diaphragmatic contractile deterioration might be caused by attenuating TNF-alpha-mediated oxygen-derived free radical production.

Keywords
endotoxin
diaphragm
pentoxifylline
TNF-alpha
MDA
cAMP
Amo Type
Original Article
Published Date
2008-04
Publication Title
Acta Medica Okayama
Volume
volume62
Issue
issue2
Publisher
Okayama University Medical School
Start Page
101
End Page
107
ISSN
0386-300X
NCID
AA00508441
Content Type
Journal Article
language
英語
File Version
publisher
Refereed
True
PubMed ID
Web of Sience KeyUT