Community Graph Sequence with Sequence Data of Network Structured Data

Yamaguchi Takehiro
Niimi Ayahiko
Recently, there has been increasing interest in data analysis for network structured data. The network structured data is represented the relation between one data and other data by graph structure. There are many network structured data such as social networks, biological networks in the real world. In this study, we will analysis the network structured data that has dynamic relation and complex interact with each data. And, we will approach the problem that is to extract transition pattern from the history of temporal change in their network structured data. Especially, in this paper, we will apply community graph sequences to graph sequences of network structured data that has large-scale and complex changes, and propose the method of extracting transition pattern of network structured data. We used social bookmark data as the data streams of analysis object and verified that social bookmark data is the network structured data that has large-scale and complex change.